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(A) Risk-free Rate : Model implied vs. Data
T T T T

Model Rf 3Y
= Data Rf 3Y

0 1 1 1 1 1 1 1
2015 2016 2017 2018 2019 2020 2021 2022

(B) Risky Rate: Model implied vs. Data
T T T

Model Risky 3Y
Data Risky 3Y
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" (A) Risk-free Rate : Model implied vs. Data
T T T T T

Model Rf 5Y
== == Data Rf 5Y

rate(%)

o |
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(B) Risky Rate: Model implied vs. Data
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Abstract

Households are becoming increasingly heterogeneous. While previous studies have revealed
many important insights (e.g., wealth effect, income effect), they could only incorporate
two or three variables at a time. However, in order to have a more detailed understanding
of complex household heterogeneity, more variables should be considered simultaneously.
In this study, we argue that advanced clustering techniques can be useful for investigat-
ing high-dimensional household heterogeneity. A deep learning-based clustering method is
used to effectively handle the high-dimensional balance sheet data of approximately 50,000
households. The employment of appropriate dimension-reduction techniques is the key to
incorporate the full joint distribution of high-dimensional data in the clustering step. Our
study suggests that various variables should be used together to explain household het-
erogeneity. Asset variables are found to be crucial for understanding heterogeneity within
wealthy households, while debt variables are more important for those households that are
not wealthy. In addition, relationships with sociodemographic variables (e.g., age, education,
and family size) were further analyzed. Although clusters are found only based on financial
variables, they are shown to be closely related to most sociodemographic variables.

Keywords Household finance - Heterogeneous household - High-dimensional data -
Clustering - Machine learning - Deep learning

1 Introduction

Households are becoming increasingly heterogeneous, due to increasing wealth inequalities

(Atkinson et al., 2011; Piketty, 2013), financial crisis (Krueger & Perri, 2006), or the COVID-
19 pandemic (Blundell et al., 2020; Dizioli & Pinheiro, 2021). Krueger et al. (2016) found
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that households in different segments of the wealth distribution had different reactions to
the 2007-2008 Global Financial Crisis, and Eichenbaum et al. (2021) reported that house-
holds have different COVID-19 pandemic mortality rates depending on their income levels.
Consequently, many researchers have investigated the heterogeneity of household finances
in various aspects. For example, heterogeneity in portfolio composition (Mankiw & Zeldes,
1991; Heaton & Lucas, 1997; Krusell & Smith, 1997; Case et al., 2005, 2011), income level
(Constantinides & Duffie, 1996; Krueger et al., 2016; Lucas, 1994; Ahn et al., 2018), wealth
level (Bricker et al., 2021; Case et al., 2005, 2011; Krueger et al., 2016), and demographics
(Campbell, 2006; Berton et al., 2018; Calvetet al., 2021; Das et al., 2020) have been identified
and analyzed.

However, Jappelli and Pistaferri (2014) and Krueger et al. (2016) pointed out the limita-
tions of existing studies that separately investigate household heterogeneity in each dimension
(e.g., income and wealth). That is, considering a few variables would not be enough to have
a more detailed understanding of complex household heterogeneity. Krueger et al., (2016,
p- 67) further noted that additional dimensions of household heterogeneity should be intro-
duced to “better capture the joint distribution of wealth, income, and expenditure we observe
in the data.”

Figure 1 illustrates the average asset allocation of Korean households with respect to
their wealth percentile from 2017 to 2020. Panel a of Fig. 1shows the results for the entire
dataset. The proportions of deposit savings and long-term rental deposits almost mono-
tonically decrease as households become wealthier. The proportion of residential housing
increases up to middle class households, but it suddenly decreases. Instead, the proportion
of nonresidential real estate increases. It is clear that the relationship between households’
asset allocation and wealth level is nonlinear. Panels b and c of Fig. 1 represent the results from
the bottom 20% and the top 20% income households, respectively. The relationship is clearly
not simplified even if we look at subgroups partitioned by income level. This shows why con-
ventional approaches would have difficulties in investigating the heterogeneity in household
finance, which involves nonlinear relationships that are entangled in a multi-dimensional
space.

Consequently, in this study, we perform a comprehensive analysis of household finance
heterogeneity in various dimensions using an advanced clustering method. Since household
wealth, income, and consumption are known to have skewed marginal distributions (Camp-
bell, 2006), it would be difficult to fit such data using standard probability distributions.
We believe that clustering methods can be helpful because these methods are specifically

(a) All (b) Bottom 20% income , (c) Top 20% income

Portfolio weight (%)
» = b2 =
(=] )
* >

0 20 40 60 80 100 0 20 40 60 80 100 0 20 10 60 80 100
Wealth percentile (%)

— Do aving wher savir Long-term rental dep: Residential hous: Nonresidential re

Fig. 1 Average portfolio weights of Korean households in 2017-2020
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designed to find representative clusters based on the multidimensional joint distribution of
data points. Because household financial data would have a complex dependence structure
between a large number of items, deep learning-based and manifold learning-based dimen-
sion reduction techniques are employed along with conventional clustering methods. Many
studies have shown that deep learning and manifold learning methods are helpful for handling
complex nonlinear dependent structures (Bengio et al., 2012).

While we use only the financial aspects (as reported in the balance sheets) of households
to identify the representative clusters, the clusters are analyzed in terms of multiple criteria.
That s, the clusters are analyzed in terms of household demographics (age, gender, education,
family size, and employment) as well as households’ balance sheets (income, expenditure,
assets, and debt). Our analysis shows that financial heterogeneity is closely related to demo-
graphic heterogeneity.

Korean household finance and living condition survey data were used in this study. Annual
data from 2017 to 2019 consist of balance sheets (including income, expenditure, assets,
and debt) and demographics (including age, gender, education, and employment status of
householder, family size) of around 20,000 households each year. The Republic of Korea
has shown remarkable growth since the Korean War in the 1950s to become the world’s
10th largest economy in 2020 according to the World Bank (2021). However, such rapid
growth has been accompanied by various social issues. Currently, Korea has the world’s
lowest fertility rate (OECD, 2021) and severe inter- and intra-generational wealth inequality
compared to other developed countries (OECD, 2018). Hence, Korea offers a good example
of a clearer heterogeneity in household finance.

The remainder of this paper is organized as follows. Section 2 introduces the clustering
method employed in this study, Sect. 3 discusses the data and experimental setting, and Sect. 4
presents findings from the numerical experiments. Finally, Sect. 5 concludes the study.

2 Deep clustering

Consider a household i’s balance sheet data x! € R, which consists of asset variables
xz € R94, debt variables xiD € R4 and expenditure variables x’é € RYE . Hence, x! =
[qu;x’b;x’é] e R4. Our purpose is to find k clusters that divide N households based on
their balance sheet data X € RY*? so that each cluster would contain households that are
similar in terms of their financial status. Hence, we apply clustering algorithms to households’
balance sheet data X € RV*4

Clustering is one of the most popular unsupervised machine learning tasks that clusters
through the similarity of data points without any label information (i.e., uses an unlabeled
data). The objective of clustering is to maximize intra-group similarities and minimize inter-
group similarities. Clustering methods have been shown to be useful in various tasks, such
as images, medical, and finance (Ahmad & Khan, 2019).

The well-known clustering methods such as k-means, DBSCAN, hierarchical clustering,
and Gaussian mixture model (GMM) have been successfully employed in various fields.!
However, such conventional methods are not suitable for handling high-dimensional data.

Recently, many studies have shown that deep learning methods can be useful for enhanc-
ing clustering methods to effectively handle high-dimensional datasets. The so-called “deep
clustering” methods have been proposed. Ghasedi Dizaji et al. (2017) and Caron et al.

I Saxenaetal. (2017) and Ahmed and Khan (2019) provide a comprehensive review of conventional clustering
algorithms.

@ Springer
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Autoeoncoder Manifold Learning (UMAP) Conventional Clustering Algorithm

Graphical Representation
Input x € RNxd

°

. »

Encoder fene A

7 € RV
Loss Function

Ix —x'lif z € RV*K  Latent Space =
Find a Manifold

foec
Decoder

Reconstructed |,
econstructed |1 ¢ pNxd

Find k clusters in 2’ € RV

7' e RN

Fig. 2 N2D framework for deep clustering by McConville et al. (2021) (Created by the authors)

(2018) proposed clustering neural network models that utilize extracted important features
from high-dimensional image data using a convolution neural network and an autoencoder,?
respectively, which are jointly learned by interacting with conventional clustering methods
(e.g., k-means). Guo et al. (2017) and Mukherjee et al. (2019) proposed clustering methods
based on latent modeling using an autoencoder and generative adversarial networks,> respec-
tively, and tested them on tabular data and image data. However, there was no significant
performance improvement compared to conventional clustering methods.

McConville et al. (2021) proposed a simple deep clustering framework called N2D that
directly uses conventional clustering algorithms (e.g., GMM) in a latent space found by deep
learning and manifold learning techniques (see Fig. 2). Unlike other deep clustering methods
mentioned earlier, the clustering step is separated from the dimension-reduction step. The
N2D approach has been shown to achieve similar or even better performance compared to
other deep clustering methods as well as conventional approaches. The key trick was to
combine deep learning and manifold learning techniques to reduce the dimensionality of
data by capturing complex nonlinear dependency structures. Therefore, we follow the N2D
framework proposed by McConville et al. (2021) to find representative clusters of household
balance sheet data.

For a household i’s balance sheet data x, we first find its k-dimensional embedding
7' € R¥ via an autoencoder, and we further reduce it into a two-dimensional embedding
7" € R? via UMAP. Then, clustering is performed with the two-dimensional embeddings
Z' of all households (i.e., for all i). The following subsections will explain in detail the two
steps: (1) dimension reduction (autoencoder and UMAP) and (2) clustering (GMM).

2 Convolutional neural networks refer to neural networks with specific structures that are known to be effective
for handling image data (see Alzubaidi et al. (2021) for more detailed information). Autoencoders refer to a
wide range of neural network models for dimension reduction tasks, and we will discuss these models further
in Sect. 2.1.1.

3 Generative adversarial networks (Goodfellow et al. 2014) are generative models that try to achieve high
performance via adversarial training of two different neural networks. Xia et al. (2021) provides a summary
of their variants and application examples.
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2.1 Dimension reduction for clustering

Dimension reduction techniques are incorporated in most deep clustering methods to
effectively handle high-dimensional data. The key to dimension reduction is to find low-
dimensional representations (or features) lying in a high-dimensional space, which is often
called latent modeling or feature extraction (Bengio et al., 2013). While other deep clustering
algorithms jointly optimize latent modeling (or feature extraction) and clustering iteratively,
McConville et al. (2021) separate the two tasks to simplify the overall process. However,
to retain (or even improve) the performance of other deep clustering methods, they fur-
ther divided the dimension reduction part into two. First, an autoencoder is used to find
mid-dimensional embeddings to capture the global features. Second, manifold learning tech-
niques, such as t-SNE and UMAP, are used to find low-dimensional manifolds to better
capture local features. McConville et al. (2021) argue that such an approach can find more
clusterable embeddings because both global and local features are crucial for clustering tasks.

2.1.1 Autoencoder

An autoencoder (AE) is a dimension reduction technique based on artificial neural networks
and is often referred to as a deep learning version of principal component analysis (PCA), one
of the most popular dimension reduction methods. While PCA is only able to capture linear
dependence structures within data, AE is known to capture complex non-linear dependencies
well (Bengio et al., 2013; Burges, 2010; Burges, 2010; Xie et al., 2016).

The AE is composed of an encoder function fpyc : R? — R and a decoder function
fpec : RY — R¥. The encoder function fryc is a mapping from high-dimensional data
X € RV*4 with N samples and d features to corresponding embeddings Z € RV*K in a
k-dimensional latent space with k < d. The decoder function fpgc is a mapping from
embeddings Z € RN*K to the original data X € RV*?. AE is trained to minimize the
following reconstruction loss:

tae = 11X = foec(fENc X))

where ||e ||12: is the Frobenius norm. While various neural network structures (e.g., convo-
lutional neural networks and recurrent neural networks) can be used for both encoder and
decoder functions, we use fully connected layers with a rectified linear unit (ReLU) for both
functions. More details regarding the architectural choices are discussed in Appendix A.

Hence, the entire household balance sheet data X € RY*4 is reduced to Z € RVN*k,
Note that the embeddings are not separately found for asset, debt, and expenditure variables.
Instead, each embedding incorporates all balance sheet variables so that the final clustering
is done based on the entire balance sheet, not just subsets.

However, embeddings Z € RV*¥ found by AE do not necessarily preserve distances
between data points X € RV > in the original space, because AE is trained only in terms of
minimizing the reconstruction loss. For any two data points X;, Xj € R¢ and their autoen-
coded embeddings z; = fenc(Xi),2; = fEnc(Xj) € R*, there is no relationship between
d(x;,xj)and d(z;, zj), where d is an arbitrary distance measure. Then, autoencoded embed-
dings would not be appropriate for clustering because the objective of clustering is to find
similar data points.

Therefore, in the N2D framework, clustering is not performed on the auto-encoded embed-
dings. Instead, AE is used to find intermediate embeddings with its dimension k not being too
small, so that the distances in the original space are not fully lost. McConville et al. (2021)
recommend using the dimension of autoencoded embeddings k as the desired number of
clusters.
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2.1.2 UMAP: uniform manifold approximation and projection

The manifold assumption in machine learning is that the observed data lie approximately on
a low-dimensional manifold, and manifold learning refers to non-linear dimension reduction
techniques based on such an assumption. Because a manifold is a topological concept in
which every point is locally connected, manifold learning techniques are known to capture
local features well. Many different models have been proposed, including isometric mapping
(Tenenbaum etal., 2000), locally linear embedding (Tenenbaum et al., 2000), modified locally
linear embedding (Zhang & Wang, 2007), Hessian eigenmapping (Donoho & Grimes, 2003),
and t-distributed stochastic neighbor embedding (Van der Maaten & Hinton, 2008). While the
last one (t-SNE) showed promising performance for complex datasets, it is often criticized
for being too locally focused and lacks scalability (McConville et al., 2021).

In this regard, uniform manifold approximation and projection (UMAP) was recently
proposed by Mclnnes et al. (2018), which is known to preserve the global structure as
well as the local structure of data through a cross-entropy cost function. Let us consider
a dimension-reduction task from Z € RV>* to0 Z/ € RV*2 In other words, we wish to
reduce k-dimensional dataset into two-dimensional embeddings. UMAP consists of three
steps. First, graph construction. In this step, a graphical representation of Z € RV *¥ is pre-
sented. The relationship between two data points z;, z; € RR¥ is represented as a probability

d(zi,zj) — pi
Pus :exp<_(11)’>,

Oj

where d is a distance measure, p; is a local connectivity parameter, and o; is a normalization
factor. Here, p; is set as the average distance from z; to its u nearest neighbors, where u
controls the balance between local and global structure. If u is low, the UMAP model would
focus on more detailed local structure, while a high u# would ignore small details to represent
global structure. Then, the global probability between the two data points is computed as.

pij = (pilj +Pjii) — PiljPjii

Second, graph embedding. For the corresponding embeddings z;, z/j € R?, the pairwise

probability g;; is computed as:
1
q4ij = T ;3"
L+allz; — 2|l

where a and b are hyper-parameters, and || e || is a norm function. Finally, cross-entropy is
used as a loss function to find the optimal mapping fyyap : R¥ — R? from Z € RVN*K to
7/ € RN*2 from a fuzzy topological point of view. The cross-entropy loss function can be
expressed as follows:

Pij 1~ pij
Lumap = ) Pi_/lOg(#> +(1- Pi.i)log(l_if].)
vy qdij qij

McConville et al. (2021) tested various manifold learning techniques (isomapping, t-
SNE, and UMAP) for their N2D framework, and N2D with UMAP demonstrated the best
performance. Therefore, we use UMARP to find the final two-dimensional embeddings Z' €
RV *2 from the intermediate embeddings Z € R *¥ found by AE.
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2.2 Clustering via Gaussian mixture model

Finally, the Gaussian mixture model (GMM) is employed to find clusters for the two-
dimensional embeddings Z' € RY*? found by AE and UMAP. Consider a k mixture of
Gaussian distributions

k
p(2) =Y N | i, ),
i=1

where N'(z | u;, ;) is a multi-dimensional Gaussian distribution with mean ; and covari-
ance matrix ¥;, and m; is a weight coefficient with r; > 0 and Zlen,- = 1. GMM finds
the optimal parameters of the above Gaussian mixture that are most likely for the given data.
That is, a log-likelihood given parameter 6Gymm

N k
tomm = Inp(Z' | Bomm) = Zln{ZmN(zfilm, Ei)}
=1 iz

is maximized with respect to 6gvm. Subsequently, the resulting k& Gaussian distributions
were considered as the optimal clusters.

Of course, conventional clustering methods would be subject to robustness issues with
respect to initial points. Since k-means or GMM all start from random initial points and are
not always guaranteed to converge to global optima, such clustering algorithms are often
built to run multiple times with different random initial points and select the best one among
them. We also use the same method to obtain more robust results.

3 Data and model

In this section, we describe our data and models (Sect. 3.1), and a simple analysis was
performed to determine the appropriate number of clusters (Sect. 3.2). Also, we compare
clustering performance of the deep clustering method with other popular clustering algorithms
(Sect. 3.3).

3.1 Data and experimental settings

The Korean household finances and living conditions survey data were used in this study. This
survey is conducted annually by the National Statistical Office of Korea, the Bank of Korea,
and the Financial Supervisory Service of Korea to provide a solid ground for policymakers
to account for households’ financial soundness in terms of their level of income, assets,
liabilities, and expenditures. Since the survey instrument was revised in 2017, we used data
from 2017. The main analysis was done using survey data from 2017 to 2020. The total
number of respondent households during that period was 54,920, and the number of unique
households excluding multiple participation in different years was 26,907. In addition, the
2021 survey data of 18,187 households was used for out-of-sample analysis in Sect. 4.4. Note
that the annual survey is conducted around every March. Hence, for example, the survey in
2020 is mostly based on households’ financial activities in 2019. This means that our main
analysis in Sects. 4.1-4.3 was done prior to COVID-19, and the out-of-sample analysis in
Sect. 4.4 would show the changes after COVID-19.
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For clustering purposes, we chose six asset-related variables, 12 debt-related variables, and
seven expenditure-related variables for household balance sheets. The asset variables include
deposit savings, other savings, long-term rental deposits, residential housing, non-residential
real estate, other real assets. The debt variables include:

e Mortgage loans: Residential housing, nonresidential real estate, long-term rental deposit,
living expenses, business, refinance

e Credit loans: Residential housing, nonresidential real estate, long-term rental deposit,
living expenses, business, refinance

Expenditure variables include foodstuffs, housing, education, medical expenses, trans-
portation, communication, other consumption expenditures. Other real assets include
automobiles and valuables, and other consumption expenditures include spending on cul-
tural life, clothing, alcohol, and tobacco. All variables are winsorized for the upper and
lower 1% to handle extremely skewed distributions. In addition, they are divided by the total
consumption expenditure to mitigate scale differences between households.

For demographic analysis, householder information (age, gender, education level, and
employment status), number of household members, residential type, and location were
used.

The specifications of the models are as follows: Both the encoder and decoder of the AE
are fully connected multi-layer perceptrons (MLPs) with three hidden layers. All layers have
rectified linear unit (ReLU) activation. The encoder MLP dimensions are d-100-100-200-%,
where d is the dimensionality of the clustering variables and k is the number of clusters.
That is, it receives a d-dimensional input, which goes through three hidden layers with 100,
100, and 200 neurons, respectively, and outputs a k-dimensional output. The decoder has
an exactly opposite structure. Then, they are optimized using the Adam optimizer (Kingma
& Ba, 2014). In Appendix A, we provide more detailed parameter settings and check the
robustness of model outputs with respect to parameter choices. We confirm that our analysis
would not be affected by small changes in parameters.

3.2 Number of clusters

We varied the number of clusters £ from 4 to 12 to see how households are clustered as
the number of clusters increases, and to determine the appropriate number of clusters for
a more detailed analysis. Figure 3 shows the optimal clusters of household balance sheets
obtained with different k, which is a hyperparameter that we should set before running the
model. That is, circles with black color (label 4) represent optimal clusters when we set
k = 4. Similarly, circles with light grey color (label 12) represent optimal clusters when
we set k = 12. The location of a circle represents the median of total assets and total debt
of households within each cluster, and the size of a circle indicates the average of the total
expenditure of households within each cluster. Due to large scale differences in the total asset
values of households, the asset axis is represented on a log-scale. The unit of all variables is
KRW 10,000 (~ USD 10).

It can be seen from Fig. 3 that clusters are created along similar increasing curves of
debt with respect to log(asset). In addition, there are a couple of clusters with very small
total expenditures, while other clusters tend to have similar total spending. Hence, we would
expect that there are more dimensions to household heterogeneity than total assets, total debt,
and total expenditure. That is, we should investigate more detailed compositions of assets,
debt, and expenditure to further understand household heterogeneity.
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Fig. 3 Optimal household clusters with different number of clusters

Next, we determined the most appropriate k (number of clusters) for further analysis. There
are households that appear in multiple years of the survey (17,887 out of 26,907). If they
are assigned to different clusters in different years, it would result from either a significant
change in the household balance sheet or unstable clustering. Thus, we keep track of these
households and calculate the average of absolute changes in asset, debt, and expenditure
variables. If the changes in the variables are small, it would mean that clustering is unstable.
On the other hand, if the changes in the variables are large, it would imply that a household’s
cluster would change mostly when they had a significant change in their financial status, and
thus, clustering would be stable. While the asset, debt, and expenditure variables are all used
together for clustering, we calculated the changes in variables separately so that we may see
more detailed aspects of the clustering results.

Table 1 shows the average absolute changes in assets, debt, expenditure variables in cluster

Table 1 Variable deviations and total count of cluster label changes

Experiments (k) Average absolute difference of variables Total count
Asset Debt Expenditure

4 0.261 0.391 0.071 7473
5 0.235 0.308 0.069 8,587
6 0.233 0.335 0.069 9,554
7 0.239 0.333 0.070 12,202
8 0.242 0.334 0.071 12,772
9 0.226 0.347 0.067 14,458
10 0.230 0.313 0.070 15,767
11 0.222 0.316 0.067 16,212
12 0.231 0.308 0.070 16,548
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changes, and total count of cluster changes. The average absolute differences indicate that
cluster changes are caused by significant changes in debt and asset variables, while the effect
of expenditure variables is relatively small. In terms of cluster numbers, note that the average
absolute change of variables naturally decreases as the number of clusters increases because
there are more clusters. For a similar reason, the total count of cluster changes tends to
increase as the number of clusters increases. In this regard, the case of k = 8 (represented
in bold) is particularly interesting because all variable changes are larger than in the case of
k = 7 while the increment of total count is marginal compared to k = 7. That is, we would
achieve relatively robust clusters when k = 8, thus, we fixed k = 8 for further analyses.

3.3 Model comparisons

Although we explained the reasons why we use a deep clustering method in Sect. 2, they
should be backed up by performance comparisons. We compare our method (deep clustering
via N2D) with four popular clustering methods, k-means, DBSCAN, hierarchical clustering
(Ward’s method), and hierarchical DBSCAN. k-means clustering would be the most well-
known clustering algorithm that tries to separate data samples into k groups by choosing
centroids that minimize the within-cluster variances. DBSCAN (Ester et al., 1996) is the
acronym of density-based spatial clustering of applications with noise, which sums up its
characteristics. It gathers points that are close to each other, while leaving out outliers.
Hierarchical clustering methods aim to find clusters by building a hierarchy of clusters. There
are various approaches depending on the linkage criterion that determines the dissimilarity
between clusters. We use Ward’s method, which can be seen as the hierarchical version of
the k-means method. Lastly, the hierarchical DBSCAN is a hierarchical version of DBSCAN
proposed by Schubert et al. (2017).

Clustering is a typical unsupervised learning task, and thus, the performance evaluation
of clustering algorithms is not as trivial as regression models and classification models. The
two most popular metrics are the Silhouette index and Davies-Bouldin index. The Silhouette
index, proposed by Rousseeuw (1987), measures how each data point is similar to its own
cluster compared to other clusters. The Davies-Bouldin index (Davies & Bouldin, 1979)
represents the average similarity between each cluster and its closest cluster. Hence, good
clusters would have a high Silhouette index but a low Davies-Bouldin index.

Table 2 summarizes the clustering performances of different methods. For each method,
the number of clusters k is chosen to maximize the Silhouette index and minimize the
Davies-Bouldin index. It is clear that the deep clustering method shows the best performance
compared to other popular clustering methods in terms of two indexes in our dataset.

Table 2 Clustering performance comparison

k-means DBSCAN Hierarchical Hierarchical Deep
clustering DBSCAN clustering
(k =10) (k =13) (k=17 (k=17 (k=38)
Silhouette (1) 0.317 0.065 0.292 0.154 0.381
Davies-Bouldin 1.418 1.278 1.515 1.553 0.816

index ({)
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4 Analysis of household heterogeneity via deep clustering

In this section, we find representative clusters of household balance sheets via deep clustering
and analyze them. The optimal clusters are analyzed in detail in terms of financial (Sect. 4.1)
and demographic (Sect. 4.2) perspectives. The inter-cluster mobility is discussed in Sect. 4.3.
Finally, we present an out-of-sample analysis in Sect. 4.4.

4.1 Household heterogeneity in balance sheets

As we have seen from Fig. 1, the relationship between asset allocation and wealth level
is highly nonlinear, and dividing households in terms of wealth level was not helpful in
simplifying the relationship. We present the same results for all five income quintiles, four
age groups (under 40, 40 to 50, 50 to 60, above 60), and 20 income-age groups in Appendix
B. While households are often classified in terms of their income or age, these results indicate
that such groups do not do much to reduce within-group heterogeneity.

Figure 4 represents the average portfolio weights with respect to wealth level of differ-
ent household clusters found by the deep clustering method. We can clearly see that the
relationship has become much simpler. In particular, asset allocations seem almost constant
within Clusters 1 to 4. This shows what deep learning can do in analyzing complex household
finance data. Deep learning has been exceptional in capturing nonlinear dependencies within
data. Hence, it was able to group households accounting for complex relationships, and thus,
groups have much higher within-group homogeneity.

We now investigate the financial heterogeneity of households in more detail. Table 3
summarizes the financial variables of eight clusters with units of KRW 10,000 (=~ USD 10).4
Clusters are sorted with respect to the average total asset value in descending order. Hence,
Cluster 1 was the wealthiest group and Cluster 8 was the poorest group. The numbers in
parentheses are proportions of each variable within the asset, debt, and expenditure categories.
Values with relatively large proportions compared to other clusters are highlighted in bold.

For assets shown in Panel A of Table 3, there is a clear tendency that the wealthy-half
(Clusters 1, 2, 3, 4) hold more than 50% of their assets in real estate (residential and non-
residential), while non-wealthy-half (Clusters 5, 6, 7, 8) hold more than 50% of their assets
in financial assets (deposit savings, other savings, long-term rental deposits). Among the
wealthy-half, the wealthiest two (Clusters 1 and 2) have a significant amount of nonresidential
real estate, but the other two (Clusters 3 and 4) do not. As for the non-wealthy-half, Cluster 5
has more than 60% of their assets in long-term rental deposits, whereas Clusters 6 and 7 are
more concentrated in savings and other real assets. Cluster 8 seems to be the poorest group
with a very small amount of assets. Overall, the major asset classes of different household
groups are summarized in Fig. 5.

It is widely known that Korean household wealth is excessively concentrated in real estate
compared to other developed countries (Fredriksen, 2012; Park, 2020). However, our analysis
reveals that this statement is true only for the wealthy-half groups. This shows the importance
of analyzing heterogeneous household groups, because aggregated values would be naturally
biased towards wealthy groups that possess large amounts of assets.

A similar tendency can be found for the debt variables (Panel B of Table 3). More than
30% of loans in Clusters 1 and 2 are for nonresidential real estate, and more than 60%
of loans in Clusters 3 and 4 are for residential housing. Approximately 70% of the loans
for Cluster 5 are for long-term rental deposits, and more than 70% of loans in Clusters 7

4 More detailed statistics of household balance sheets of different clusters are given in Appendix C.
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Fig. 4 Average portfolio weights of different household clusters

and 8 are for living expenses, business funds, and refinances. Hence, the purpose of loans
changes from urgent financial liquidity to purchasing real estate as the household wealth
level increases. In addition, more than 70% of the loans in Clusters 1 to 5 are mortgage loans,
but the other clusters have more credit loans. Clusters 7 and 8 rarely have mortgage loans
(< 10%), probably due to a lack of underlying assets. Figure 6 summarizes the findings.

Panel C of Table 3 shows the expenditure variables for different household clusters. While
the overall proportions are not as heterogeneous as in the asset and debt variables, a few
interesting observations can be found. First, the poorest two clusters (7 and 8) spent arelatively
large amount on housing (> 20%) compared to the others. Second, Clusters 2 to 5 tended
to invest more on education (> 10%). Third, more than 10% of the expenditure of the
poorest group (Cluster 8) is for medical purposes. Fourth, wealthy groups (Clusters 1 to 5)
tend to spend slightly more (around 25%) for cultural life, clothing, alcohol, tobacco, etc.
(categorized as ‘others’).

Arough decision tree is shown in Fig. 7 to summarize the multidimensional heterogeneity
of household finance. We can see that asset and debt variables are more crucial for representing
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the heterogeneity of households than expenditure variables. For more detailed classifications,
asset compositions (especially real estate) are important for wealthy groups, whereas the
purpose and type of debt are important for non-wealthy groups.

4.1.1 Clustering quality and variable importance

Here we further check the quality of the clustering results and the importance of each vari-
able by investigating how variables are distributed within and between groups. Recall that
the objective of clustering is to find clusters with high within-cluster similarities and low
between-cluster similarities. We believe that the Gini coefficient and its decomposition can
be useful in this regard. The Gini coefficient is a popular measure of inequality in the dis-
tribution of income or wealth, and some researchers have decomposed the Gini coefficient
to investigate the causes of disparity in income distributions with different populations and
educational backgrounds (Deaton & Paxson, 1994, 1997). There are two popular approaches
to decomposition: Pyatt (1976) and Shorrocks (1982). While the former directly compares
the Gini coefficients of different groups, the latter linearly decomposes the Gini coefficient
into within-group, between-group, and overlapping inequalities. We use the latter approach
because it quantifies within-group and between-group inequalities that are exactly in line
with the clustering objective.

Let us consider k groups (or clusters) and a variable Y. Yy represents the variable within
group i with mean py and cumulative distribution F;(Y;). Then, the overall population Y, =
Y; UY;...U Yy is the union of all groups with F,(Yy) = > ;piFi(Yi), where py is the
population share of group i, with mean . The Gini coefficient of the overall population is
defined as.

. 2cov(Yy, Fu(Yy))
B Hu !

G

and Mookherjee and Shorrocks (1982) decomposed it into
G= Gw + GB + Go.

Here, within-group inequality G is defined as Gw = ) _;piqiGi, where q; is the variable

i

share of group i, G; = is the Gini coefficient within group i. Between-group

inequality Gg is defined as Gg = ZiZj W, and overlapping inequality Go is the
remainder.

We calculated within-group inequality (Gw), between-group inequality (Gg), and over-
lapping inequality (Go) for all cluster variables, and the proportions of the three inequalities
are shown in Fig. 8. Three important observations were made. First, we can see that all
within-group inequalities are less than 20% and are mostly much less than between group
inequalities. This indicates that the quality of clustering is good because all variables tend
to have high within-group similarities and low between-group similarities. Second, there are
some variables in which between-group inequality accounts for more than 60% of the Gini
index. For example, long-term rental deposits, residential housing, nonresidential real estate,
mortgage loans for nonresidential housing, long-term rental deposits, business funds, and
credit loans for long-term rental deposits. All these variables were shown to be very impor-
tant in interpreting the clustering results. Third, all expenditure variables exhibited more
than 60% of the overlapping inequalities. That is, these variables do not contribute much to
clustering, which is consistent with our previous discussion.
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Fig. 8 Decomposition of Gini coefficients into between-group, within-group, and overlapping inequalities

Table 4 List of independent variables for logistic regression

Independent variable Description

Area of residence Living in Seoul metropolitan area or not

Gender of householder Male or not

Number of family members (Numbers are directly used for regression)

Education level of householder Under middle school, high school, or higher education

Home ownership None (includes monthly rental or free company housing), long-term
rental, or homeowner

Age of householder Under 39, 40 ~ 49, 50 ~ 59, or upper 60

Income level Low-income (1st and 2nd income quintiles), mid-income (3rd income

quintile), or high-income (4th and 5th income quintiles)

Employment status Employed or not (includes freelancers or helping family business)

4.2 Sociodemographic characteristics of clusters
Although optimal clusters are found only with respect to a financial perspective, there is no

doubt that household finance is closely related to sociodemographics, such as householder’s
age, education level, and so on. Therefore, we conducted logistic regressions for all clusters
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to investigate their sociodemographic characteristics. Consider a logistic regression for a
cluster. The dependent variable y; is defined to represent whether a household is in a cluster.
The independent variables are presented in Table 4. (Detailed statistics with the percentage
see Appendix A.1.)

Table 5 summarizes the results of logistic regressions. Regression coefficients with statis-
tical significance and corresponding odd ratios are shown. Notable variables are highlighted
with shadows: positive (italic) and negative (bold) relationships. We can see that most vari-
ables are statistically significant, while having both positive and negative values. It shows
a strong relationship between the multidimensional heterogeneity of household finance and
sociodemographics.

Clusters 1 and 2, the wealthiest two groups, were shown to consist of older households
compared to others. They both tend to have a highly educated male householder, living in
their own houses, and have a high income. While Cluster 2 households live outside the Seoul
metropolitan area and are employed, Cluster 1 households live in or near Seoul and have a
small number of family members with mixed employment status. Cluster 2 was also more
likely to have more family members.

Cluster 3 is quite unique in that it is one of the wealthiest groups with their own houses
in metropolitan areas, but its households are likely to be unemployed (including freelance
or helping family business) and have low income. They can also be characterized as highly
educated young households. Perhaps this peculiar cluster represents young households who
inherited houses early.

Clusters 4 and 5 can be regarded as two middle-class groups. Cluster 4 can be characterized
as living outside metropolitan areas, large families, homeowners, and low education, while
Cluster 5 can be characterized as living in metropolitan areas, small families, long-term rental
housing, high education, and high income. These reflect typical rural-urban differences in
family size (Key, 1961), income (Lipton, 1977), education (van Maarseveen, 2020), and
housing affordability (Lee & Jun, 2018).

Clusters 6 and 7 both consist of poor households who are relatively young, under temporary
housing (mostly monthly rent), with no higher education. However, the former is likely to
be employed, whereas the latter is not.

Cluster 8 clearly represents the most vulnerable households with very small families
(high probability of being alone), low education, low income, low education, unemployed,
and under temporary housing, regardless of their age. This cluster had the smallest number
of constituents.

Let us summarize the findings with respect to variables.

Age Old clusters are likely to be wealthy, which is natural in a sense that households
would accumulate wealth during working ages. However, there were also two
strong exceptions (Clusters 3 and 8)

Education The three most wealthy clusters are highly educated while the three most poor
clusters are poorly educated. For the two middle class groups, one in
metropolitan area (Cluster 5) is highly educated and the other outside
metropolitan area (Cluster 4) is poorly educated. Also, Cluster 3 is highly
educated but has low income

Income The two most wealthy clusters have high income, and the three most poor clusters
have low income. However, three clusters in the middle exhibit mixed results
(especially Cluster 3)
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1 2 3 4 5 6 7 8
1 0.06 0.04 0.02
2 0.06 0.04 0.01
3 0.06 0.04 0.01
4 0.07 0.05 0.02
5 0.07 0.05 0.02
6 0.06 0.10 0.11 0.10 0.10 0.01
7 0.06 0.10 0.10 0.09 0.06 0.17 0.36 0.06
8 0.06 0.09 0.10 0.09 0.07 0.09 OMI5 0.36
Fig. 9 Transition matrix between household clusters
Number of While there is no clear linear relationship between family size and wealth, it is
family members interesting to note that the wealthiest and the poorest clusters are highly likely to
consist of small families
Area of residence No overall trend is found, but typical rural-urban differences can be seen between

the two middle class groups (Clusters 4 and 5)

Previous studies have focused on finding a linear relationship between two variables. For
example, researchers have reported the existence of a linear relationship between income
and wealth (Lee et al., 2020), between education and wealth (Briickner & Gradstein, 2013;
Boshara et al., 2015), and the absence of a linear relationship between income and wealth
(Mueller, Buchholz, & Blossfeld, 2011). However, our results show that even if there is an
overall trend between two variables, there is always a strong exception, making the rela-
tionship non-linear. Hence, considering multiple variables is crucial for understanding the
complex relationship between financial and sociodemographic variables.

4.3 Mobility between clusters

We analyze the mobility between clusters by tracking the cluster movements of households
who participated in the survey multiple times. From 2017 to 2020, clusters of 12,272 house-
holds out of 52,920 total respondent households changed. Figure 9 shows the transition matrix
of the clusters. The number in cell (i, j) represents the probability of a household moving
from cluster i to cluster j in the next survey.

Some block-diagonal shapes can be observed. Two large blocks can be seen within Clusters
1, 2, 3, 4 and within Clusters 5, 6, 7, 8. That is, not many households move from the wealthy
groups to the non-wealthy groups and vice versa, which indicates that there are two separate
classes that are not reachable to each other in a few years of term. It is interesting to note that
Clusters 1, 2, 3, 4 mostly own their houses and Clusters 5, 6, 7, 8 do not.
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In addition, there are small blocks between most adjacent clusters (e.g., between clusters
1-2, 34, 5-6, 6-7, 7-8). However, we can find another weak link between Clusters 2 and 3.
Recall that the key difference between the two clusters was that Cluster 2 had a substantial
amount of nonresidential real estate, but Cluster 3 had almost none. Therefore, real estate is
not only a crucial factor for classifying households, but also a huge hurdle for households
who wish to climb up the class ladder.

4.4 Out-of-sample analysis after COVID-19

Lastly, we show the out-of-sample results using the survey data in 2021, which is mostly
based on financial activities of households in 2020. Hence, it will allow us to see the changes
after COVID-19 pandemic.

Figure 10 represents the variable importance weights of between-group inequalities of
Gini coefficients of asset and debt (mortgage and credit loans) variables. We can see from the
figure that after COVID-19, between-group inequalities are decreased in asset variables, but
they are increased in debt variables. This means that the changes in debt after COVID-19 are
quite different for different clusters, while changes in assets would not. Hence, we can see
that the impact of COVID-19 was quite asymmetric for household debt, but it was relatively
even for household assets. This makes sense because COVID-19 caused immediate damage
to the income of households who have their own business (e.g., restaurants or coffee shops),
and many of them had to obtain additional loans.

P -
S 3

[
S

Importance weight (%)

Savings deposit Other deposit Long-term rental deposit Residential housing sidential real estate Other real assets
Assets

~ 80
&
5 60
K]
3 40
s
£
g 20
. .
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Residential housing ~ Non residential real estate  Long-term rental deposit Living expense Business funds Refinance

Debts (Mortgage loans)

Residential housing ~ Non residential real estate  Long-term rental deposit  Living expense Business funds Refinance
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Fig. 10 Variable importance weights of between-group inequalities of Gini coefficients in different years
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(a) Before COVID-19 (b) After COVID-19

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

0.13 0.07 0.06 0.06 0.04 0.02 1 0.10 0.07 0.05 0.04 0.03

0.10 0.05 0.06 0.04 0.01 2 0.13 0.05 0.06 0.04 0.02

3 008 0.06 0.06 0.04 0.01 3 0.07 0.13 0.05 0.04 0.03

4 0.05 0.04 0.07 0.05 0.02 4 0.06 0.16 0.09 0.05 0.04 0.02

5 007 0.11 0.12 0.08 0.12 0.02 5 0.06 0.09 0.12 0.15 0.08 0.08

6 0.06 0.10 0.11 0.10 0.01 6 0.04 0.09 0.09 0.07 0.14 0.32 0.15 0.10

7 0.06 0.10 0.10 0.09 0.06 7 0.04 0.07 0.09 0.07 0.10 0.18 0.33 0.13

8 006 009 010 009 007 009 015 [EES s 003 007 009 007 014 017 017 m

Fig. 11 Transition matrix between household clusters before (left) and after (right) COVID-19

Next, we investigate the change in mobility between clusters. Figure 11 compares the
transition matrix before and after COVID-19. It is clear that the mobility is increased after
COVID-19, because every diagonal term became smaller (i.e., probabilities of staying in the
same cluster are reduced).

Average probability of moving into a poorer cluster

Average probability of moving into awealthier cluster

However, if we look into the above ratio® for the transition matrix, there is a significant
difference between the wealthy half (Clusters 1,2,3,4) and the non-wealthy half (Clusters
5,6,7,8). Before COVID-19, the average of the above ratio for the transition matrix for the
wealthy half and the non-wealthy half was 0.621 and 0.653, respectively. After COVID-19,
however, they become 0.639 and 1.151. While the direction of cluster mobility for the wealthy
half was not affected by COVID-19, it is clear that the probability of the non-wealthy half
going into poorer clusters became much higher. Hence, we can see that COVID-19 had a
much greater adverse impact for the non-wealthy half than the wealthy half.

5 Conclusion

This study has shown how advanced clustering techniques, especially that involve deep learn-
ing models, can be useful for understanding the complex heterogeneity of household finance.
By utilizing a deep learning-based clustering N2D framework proposed by McConville et al.
(2021), we were able to efficiently handle high-dimensional data to find representative clus-
ters. More specifically, we could capture and decompose the nonlinear relationships in data
through deep clustering, whereas conventional age or income groups could not.

The key implication of this study is that various variables should be considered together
to analyze household heterogeneity. For example, real estate ownership was shown to be
critical for the broad classification of wealthy and non-wealthy Korean households. Within
the wealthy group, nonresidential real estate was shown to be the next key factor, while credit
loans were found to be important explanatory variables for further classifications within the
non-wealthy group. We used the Gini coefficients and their decompositions to further verify

5 For the wealthy half (Clusters 1,2,3,4) before COVID-19, the numerator would be the average of the values
on the right side of the first four diagonal values (0.18 + 0.13 + 0.07 + ... + 0.04 + 0.07 + 0.05 + 0.02) / 22
= 0.0673. On the other hand, the denominator would be the average of the values on the left side of the first
four diagonal values (0.10 + 0.08 + 0.12 + 0.05 + 0.15 + 0.15) / 6 = 0.1083. Hence, the ratio becomes 0.0673
/0.108 = 0.621. The other ratios can be calculated similarly.
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the quality of clustering and the relative importance of the variables. In addition, the multidi-
mensional heterogeneity of households was shown to be closely related to sociodemographic
variables, and the relationships were non-linear.

Since this study was conducted based on Korean household data, detailed findings should
be interpreted carefully and might not be directly applicable to households in different
countries. Hopefully, however, our study will encourage other researchers to search for
more multidimensional aspects of household heterogeneity. Such findings are crucial for
developing more accurate macroeconomic models with heterogeneous agents and deriving
appropriate economic policies.

Acknowledgements This work was supported by the National Research Foundation of Korea (NRF) grant
funded by the Korea government (MSIT) (No. NRF-2019R1C1C1010456). Fabozzi was funded by EDHEC
Business School for the 2020-2021 academic year.

Appendix A: Hyperparameters for deep clustering

For autoencoder, we used a three-layer fully connected networks with rectified linear units
(ReLU). While there are many different network architectures and activation functions, we
have chosen one of the simplest forms to mitigate the architecture specific results. Note that
ReLU is known to be more appropriate for sparse data compared to the sigmoid function
(Glorot et al., 2011), and households’ debt data are very sparse since there are many house-
holds who do not have any or some type of loan. In addition, we set the dropout rate as 0.05
for all layers for the robustness of the model.

Table 6 shows the range of hyperparameters we used to train deep clustering algorithm
(autoencoder and UMAP). To find the optimal parameters, we used a random search approach
(Bergstra & Bengio, 2012) by randomly sampling 200 models within the range. Note that the
number of all combinationis 4 x 4 x 4 x 3 x 2 = 384, and thus, the random search covers
more than 50%.

We have chosen the best model configuration among 200 randomly sampled model settings
with respect to the Silhouette index and Davis-Bouldin index. Here, we show that our results
are not restricted to this particular choice. In Fig. 12, we compare the box plot of Euclidean
distance from the cluster centers of the best model for top 20 model configurations and the
whole 200 random samples. To be more specific, we ordered clusters in terms of their average
wealth for each model setting. Then, for a model configuration, we would have clusters 1 to
8. Next, we calculated the distance between the cluster i in each model configuration and
the cluster i in the best model configuration, and we took the summation for all i. In the
figure, it is clear that the top 20 models have cluster centers that are very much close to the
cluster centers from the best model. Hence, it means that the results shown in Sect. 4 would

Table 6 Hyperparameter search

range Hyperparameter Range
Batch size [16, 24, 32, 64]
Learning rate [0.0001, 0.001, 0.001, 0.01]
Epochs [20, 50, 75, 100]
# of nodes in each layer [10-1000, 10-1000, 10-1000]
o, B(UMAP) [0.9 ~1,0.5-1.0]
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Fig. 12 Euclidian distance between the models

not change much even if we choose another model configuration within the top 20 model
configurations with respect to the Silhouette index and Davies-Bouldin index.

Appendix B. Average portfolio weights of different income and age
groups

See Figs. 13, 14, and 15.
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Fig. 13 Average portfolio weights of different income quintiles
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Fig. 15 Average portfolio weights of different income and age groups

Appendix C. Summary statistics of household balance sheet of clusters

See Table 7.
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1. Introduction

Financial markets play a significantly important role in the modern economy. The financial market is
where systematic financial transactions are made between the source of funds and the demand for funds.
A product called a financial asset or financial instrument is required for a financial transaction. The
investment industry has undergone significant changes in recent years due to machine learning and Al
(Jaeger et al., 2020). However, financial portfolio management today is mainly based on linear models
and the Markowitz framework known as Modern Portfolio Theory (MPT) (Markowitz, 1959). Despite
its importance, the MPT is criticized for making idealistic assumptions about financial markets. MPT
is determined as an estimate of future returns and volatility for each asset and its correlation. However,
market price forecasting remains one of the significant challenges in the time series literature due to its
noisy character (Tsay, 2005).

Data in financial markets are volatile and change rapidly over time. Traders need to make
decisions in real time amid quickly changing information. This real-time information creates an efficient
market. Current trading prices reflect all information and future data available to market participants.
When meaningful long-term predictions are made in efficient markets, these predictions are already
reflected in the short-term markets traders are trading (Timmermann & Granger, 2004). In other words,
future forecasts affect current prices, and future prices again become uncertain.

Developing financial transactions and institutions increases market efficiency while making
market prices challenging to predict. Recently, as convolutional neural networks (CNN) are gradually
developed, research in various directions has been proposed (Krizhevsky et al., 2017). Among them,
research on generative models has been actively conducted, and Goodfellow et al. (2014) first proposed
a Generative Adversarial Networks (GAN) model in which generators and discriminators compete with
each other for learning. Afterward, the generative model using these outputs a clear result similar to the
actual photo and can create a new sample similar to the learning data by itself through the distribution
of the learning data, so it is widely used in young fields and shows excellent performance.

In addition, various studies are being conducted to apply quantum computers to machine
learning. One of them is a GAN using a quantum computer. Quantum generative adversarial networks
(QuGAN) use the interaction of generators and discriminators to map an approximate representation of
the probability distribution underlying a given data sample onto a quantum channel (Assouel et al.,
2022). The generator and discriminator are trained in alternating optimization steps. The generator aims
to generate samples that the discriminator will classify as training data samples (i.e., samples drawn
from the actual training distribution), and the discriminator attempts to discriminate the original training.
The generator's data sample and the data sample (i.e., distinguishes between real and generated
distributions). The final goal is for the quantum generator to learn a representation of the underlying

probability distribution of the training data. Thus, a trained quantum generator can load quantum states



that are approximate models of the target distribution.

This study presents pioneering research on building optimized portfolios using QuGAN. Our
models use historical price data to predict future price trends related to non-linear interactions between
different assets. We propose a methodology for constructing an arbitrary portfolio utilizing the
distribution of accurate market data learned through QuGAN training. We specify the best portfolio
diversification that minimizes the observed risk and maximizes the expected return. The main
contributions of this paper are as follows.

First, unlike existing work and practice, this paper automatically learns non-linear market
behavior and non-linear dependencies between different financial assets by modeling market
uncertainty conditioned on the most recent past and generating many realistic future trends from the
current situation. Second, to solve the portfolio diversification problem, we propose a real-time series
generation model called QuGAN and an optimization methodology using the QuGAN model. The
probability distribution learned by QuGAN allows you to use different options to offset the risk on your
return. Third, experiments on real data sets show that the proposed approach can realize the risk-return
tradeoff and far outperforms conventional MPT.

The rest of the paper is structured as follows. After introducing MPT in Section 2, we briefly
review related work in Section 3. We present the QuUGAN methodology proposed in Section 4. This
includes market uncertainty modeling, generative network architecture, and an optimization approach
for portfolio diversification decisions. Section 5 presents some experimental results demonstrating the

effectiveness of QuGAN on real-world financial assets and data. Finally, Section 6 concludes the thesis.

2. Portfolio optimization with Markowitz’s framework

Modern Portfolio Theory (MPT) is a practical method for selecting investments to maximize overall
return within an acceptable level of risk. This mathematical framework is used to construct an
investment portfolio that maximizes the expected return for a given level of risk (Markowitz, 1959).

MPT is a method that investors can use to construct diversified portfolios that maximize
returns without unacceptable levels of risk. A key component of MPT theory is diversification.
Markowitz argued that investors would achieve the best results by evaluating their tolerance for risk
and choosing the optimal combination of the two.

Let vector W = {w;,wy, -, w,} with n-assets) be the strategy for an investment portfolio
consisting of financial assets, where w;is the amount of capital invested in the i-th asset. We assume
the distribution of future asset returns and optimize W to maximize the expected portfolio's return and
minimize its risk. According to Markowitz, the prediction of the probability distribution of asset return

rrate following assumptions:



r ~ N (%) where r is the return vector (r; is the return on asset i)
u is the expected average return vector,

2 1s the covariance matrix.

The expected mean returns ¢ and the return covariance matrix 2 is estimated from past
observations and is assumed to be constant in the future. Given a portfolio strategy W, the portfolio

future return 7,(W) is determined by a linear combination of individual asset returns.

T W)~N (1, (W), 03 (W)
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where Y;w; =1.

We aimto find W that minimizes the portfolio risk factor 6 and maximizes the expected value
U, . This optimization problem can be solved in closed form. Generally, the efficient frontier is
represented by a solid line in the risk-return space in Figure 1. We use the covariance matrix X to reach
the efficient frontier and minimize the risk. That is, assets with a small correlation coefficient with other
assets should be included. The Markowitz Framework is a mathematically robust model. However, the
home has some drawbacks. First, returns on individual assets are not normally distributed. Second,
interactions between different assets can be non-linear, but the covariance X only captures linear

dependencies. Third, future probability distributions of asset returns may differ from past ones.
Insert <Figure 1> here
In this study, we try to solve this problem by using Quantum GAN, a generative model using
quantum computers. QuGAN implicitly reflects non-linear interactions between different assets without

assuming a probability distribution for the rate of return of development assets. QuGAN also explicitly

models the trained current market conditions and future probability distributions of returns.

3. Literature Review

3.1 Portfolio Optimization



MPT is an investment theory that seeks to maximize the expected return of a portfolio for a given
amount of portfolio risk or minimize the risk for a given level of expected return by selecting a ratio of
different assets. Although MPT is widely used in practice in the financial industry, in recent years, the
underlying assumptions of MPT have been extensively challenged.

MPT is an important advance in the mathematical modeling of finance. MPT, also known as
portfolio management theory, is a sophisticated investment decision approach that helps investors
classify, estimate, and control the type and amount of expected risk and return. Portfolio theory departs
from traditional security analysis in that it shifts the emphasis from analyzing the characteristics of
individual investments to determining the statistical relationship between the individual securities that
make up the overall portfolio (Elton & Gruber, 1997). The theory at the heart of portfolios quantifies
the relationship between risk and return and posits that investors should be rewarded for taking the risk.
This theory encourages asset diversification to hedge against market risk and risks inherent to a
particular company.

MPT mathematically formulates investment diversification, selecting a collection of
investment assets that collectively have lower risk than individual assets. This possibility is intuitive to
see, as different types of assets often change in value in opposite directions. However, diversification
lowers risk even when asset returns are positive, not negatively correlated. More technically, the MPT
model’s asset returns as a conventionally distributed function (or, more generally, an elliptic distributed
random variable), defines risk as the standard deviation of returns, and models a portfolio as a weighted
combination of assets. A portfolio is a weighted combination of returns on assets. MPT seeks to reduce
the total variance of portfolio returns by combining multiple assets whose returns are not positively
correlated. MPT also assumes investors are rational and markets are efficient.

The idea behind MPT is that assets in an investment portfolio should not be individually
selected on merit. Instead, it's important to consider how each asset's price changes and all other assets
in the portfolio change. An investment is a balance between risk and expected return. For a given risk,
MPT describes selecting the portfolio with the highest expected return. Or, for a given expected return
rate, MPT describes setting a portfolio with the lowest potential risk. Generally, assets with higher
expected returns are riskier (Taleb, 2007).

To overcome the limitations of MPT, a conditional volatility model that can change the
volatility of returns over time has been studied. These sophisticated statistical models assume that
changing relationships between assets will eventually return to normal. Therefore, long-term changes
in returns or correlations fail.

With machine learning advances, investors and researchers are researching to apply machine
learning to finance. However, most research focuses on trading strategies using reinforcement learning.
These trading strategies focus on decision-making and allow portfolio diversification. Reinforcement

learning buys additional assets with increased target weights and sells assets with decreased target



weights. Reinforcement learning assumes an ideal market where all trades are instant and does not affect
the market. However, there are thousands of traders trading simultaneously in the market, and complex
factors affect the market, given the complexities of financial markets, machine learning, and portfolio
management.

The QuGAN algorithm assumes a single agent and an ideal trading environment in this work.
Each trade is executed instantly and does not affect the market. Indeed, the trading environment is
essentially a multiplayer game with thousands of agents acting simultaneously and influencing the
market in complex ways. Combining machine learning with portfolio management still needs to be

explored, given the complexities of financial markets.

3.2 QuGAN

Machine learning is being used across society today, from image and voice recognition to traffic
prediction, product recommendation, medical diagnosis, stock market trading, and fraud detection.
Deep neural networks, a specific machine learning tool, have made significant progress over the past
few years. However, despite this progress, such machine learning needs more data sizes. An experiment
in the laboratory can be run many times, whereas a time series of stock prices only occurs once in
finance. To compensate for this, attention was paid to reproducing existing data with high accuracy.

One of them is a generative adversarial network (GAN). It is an unsupervised learning device
in which two neural networks, a generator, and a discriminator, compete to generate information similar
to a given data set in the minimax game (Goodfellow et al., 2014). They have been utilized over the
past few years in the fields of image generation (Schawinski et al., 2017; Yu et al., 2018), medicine
(Anand & Huang, 2018; Zhavoronkov et al., 2019), and quantitative finance (Ruf & Wang, 2020).

A preliminary study exploits the exponential advantages of quantum computing,
demonstrating the quality of this approach, especially for high-dimensional data (Huang et al., 2021).
Ling et al. (2019) presented experimental proof-of-principle demonstrations of QuGAN in
superconducting quantum circuits, Stein et al. (2021) use quantum fidelity measures to propose loss
functions acting on quantum states.

Real quantum computers are not yet available, but the Noisy Intermediate-Scale Quantum
(NISQ) algorithm already exists and can perform quantum-like tasks (Bharti et al. 2021). Indeed,
recently Quantitative Finance has placed a great emphasis on data-driven models (using deep learning
and reinforcement learning), and the need for large amounts of data for training purposes has increased.
Thus, generative models (Kondratyev and Schwarz 2019) are key in helping generate realistic data that

can be used for training.

4. Portfolio optimization with QuGAN



4.1 Overview QuGAN

GAN allows the processing potentially complex financial services data so that the distribution does not
need to be explicitly specified. GAN will implicitly maximize the likelihood of complex distributions,
allowing us to generate samples from such distributions. The key here is an implicit maximum
likelihood estimation principle that does not specify which complex distributions are parameterized.

This study deals with time series data on stock prices. Bai et al. (2018) show that one-
dimensional convolutional networks are effective for processing time series and outperforming
conventional recurrent networks regarding result quality and performance. In our study, we process the
time series and represent it as a matrix M with the number of assets k columns and m rows (dates),
M € ™k,

So M consists of two parts. M}, is the known part with length b and the past stock price. Mg
is the unknown part with length f and the future stock price. A generative deep neural network G is
applied to learn the probability distribution of a target future price My given a prior distribution of
known recent past M,,. Figure 2 shows t graphical interpretation of the inputs and outputs of generator

G. A generative model returns a synthesizable future matrix My by simulation.

My = G(M,) 2

The known past M, is used to adjust the probability distribution of the future M; based on
the most updated market conditions. Generator G is a generative network in which My learns its
weights such that the past M}, matches the probability distribution of given My in the training data
set. Generator G is trained in adversarial mode against discriminator D to minimize the entropy

between synthetic data My and real data M), based on historical observations.

Insert <Figure 2> here

To implement the adversarial training process, we consider a discriminant network D that
connects the full price matrix M, namely the condition M, and the synthetic data My or the real data
M. The discriminator output is the threshold ¢ = D(M). The discriminator is trained to minimize ¢
for real data and maximize ¢ for synthetic data, whereas Generator G's training goal is to minimize ¢
for synthetic data.

QuGAN is a quantum algorithm used for generative modeling. The algorithm uses the

interaction of quantum generators. That is, learn the underlying probability distribution given ansatz



and classical discriminators, neural networks, and training data.

QuGAN distinguishes between real and generated distributions. Like GAN, generators and
discriminators of QuGAN are trained in alternating optimization steps. The generator aims to generate
samples that the discriminator will classify as training data samples, and the discriminator is the initial
training to try to differentiate. The end goal is for the quantum generator to learn a representation of the
underlying probability distribution of the training data. Thus, a trained quantum generator can load

quantum states that are approximate models of the target distribution.
4.2 QuGAN architecture

Normalize the return at closing price p, adjusted over the training period. We use a revised closing
price p for each financial asset. Generally, [0,1] is used primarily for regularization in machine
learning. However, in this study, it is normalized to [—1,1] to distinguish the rise and fall of the stock
price easily. This normalization allows limited values to be learned to a reasonable level. However, in
this case, data for outliers is also normalized, so in actual learning, data for the top 5% and bottom 5%

are excluded and normalized.

normalizedr =

) (r —Tmin) — 1 (3)

(rmax ~ Tmin

where, 13,4, and 71y,;; mean the maximum and minimum values of the rate of return for a given asset,
respectively.
Given stock data, we use QuGAN to learn the underlying random distribution of the data and

directly load it into a quantum state.

2"—1

|9¢rainea) = z \/p_]|rj> “4)
j=1

where \/p_] is the probability amplitude of the |r;). In other words, the probability of getting state |r;)
is a pj. The main goal of QuGAN is to generate a probability distribution close to the underlying
distribution of training data M (Zoufal et al., 2019).

As with other quantum algorithms, samples must be mapped to discrete values. The number
of values that can be expressed is determined by the number of qubits used. Therefore, the density of
data is defined as the number of qubits. The n-qubits can represent 2™ discrete data.

When the learning process is complete, the generator G can synthesize a realistic future price

My = G(M,). We use these synthetic simulations to numerically estimate the expected risk and return



for different portfolio diversification strategy w. Therefore, we run portfolio optimization on the

estimated posterior probability distribution.

For a given conditioning M, let us consider a set S of n simulations My & S sampled at

P(Mf |M p) by evaluating the generative model G(M,). Portfolio return achieved with diversification

w for a given the simulation My is:

Ty (w, Mg ) = Z x; 1y (My) (5)

2

A simulation My € S sampled from the probability distribution P(Mf |M p) is used to infer
the probability. The portfolio optimization problem is defined as in the traditional Markowitz's
optimization approach (Section II), but runs on the predicted future probability distribution, which is
nonnormal and contains nonlinearities. Interactions between different assets. For example, the
optimization goal is to identify the configuration of x that maximizes the expected return p, =
E (rp(w, Mg )| w, Mp,) and minimizes the risk function o(w,Mp). Both o and p, are estimated
based on simulated samples My € S.

In this framework, the risk function o(-) can be any metric such as risk value or volatility.
Without loss of generality, we use estimated volatility, which allows the approach to be directly
evaluated with respect to traditional Markowitz's methodology. So, the optimization problem follows
as below:

max u, (w|S)
w

(6)

minao(w|S)
w

Equation (5) is the objective function. We solve optimization problem like MPT.
Figure 3 shows the quantum circuit for QuGAN. The number of dimensions and the number
of distributions to discretize determine the number of qubits. For example, if the number of assets is

three and each asset has four qubits (discrete with a total distribution of 2°4), we need 12 qubits.

Insert <Figure 3> here

5. Numerical Result

5.1 Data select



To evaluate the proposed QuGAN approach, we apply publicly available data, from Yahoo Finance.’
Our test uses three-year data from January 2019 to December 2021, stock price data. A generative model
G is trained using the daily returns of individual stocks. This learned model is used to optimize the
portfolio. The summary statistics of the daily stock return are reported in Table 1. The number of

observations is 756.

Insert <Table 1> here

In this task, we construct a portfolio using three individual stocks, Apple, Google and Amazon.
We select three stocks taking into account the following considerations. First, we include only assets
for which data is available from at least 2010, according to the Yahoo Finance data source. Yahoo
Finance found some erroneous data, such as NaN values or 10-fold fluctuations in asset prices in one

day, etc. These errors are rare, but related assets were excluded.

Insert <Figure 4> here

The portfolio under consideration comprises stocks with low correlations and asset price
volatility. Figure 4 shows the time series of the stock price and daily return from January 2019 to
December 2021. When building a portfolio, it should be made up of assets with low correlations. This
is because it can reduce volatility while maintaining maximum returns. Figure 5 shows the correlation
matrix with real market data. The heat map below is the correlation coefficient for three stocks: Apple,
Google, and Amazon. The closer the correlation coefficient is to one, the more assets move together.
The correlation coefficient between Apple and Google is the highest at 0.12; the correlation is close to
Zero.

Insert <Figure 5> here

5.2 Benchmarks

We benchmark the proposed QuGAN approach with respect to Markowitz's state-of-the-art portfolio
optimization (Rubinstein, 2002). QuGAN algorithm returns a discrete set of optimal diversifications
w € X, whereas Markowitz's methodology solves the optimization problem in continuous form. In this
work, we define a random portfolio of 10,000. Therefore, the return and risk of the i-th portfolio is

defined by Equation (1).

! https://finance.yahoo.com/
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Figure 6 shows the measured and ranked Sharpe Ratio with real market data. The higher the
weight for Apple, the higher the Sharpe Ratio, the higher the weight for Amazon, the lower the Sharpe
Ratio. Figure 7 is the scatter plot of each portfolio by returning the portfolio's risk on the x-axis and the
y-axis.

Insert <Figure 6> here

Insert <Figure 7> here

5.3 Portfolio analysis with QuGAN

QuGAN learns from real data and creates fake market data. Figures 8 and 9 show the results of
comparing the distribution of fake data generated in this way with real data. Figure 8 is the distribution
using actual data. All three assets it has the same shape as the normal distribution. Figure 9 is a histogram
of fake data generated through QuGAN. Since the actual discretization is divided into 16 intervals, a

curve is seen compared to the original distribution.

Insert <Figure 8> here

Insert <Figure 9> here

The methodological limitations of GANs and incomplete quantum computers cause this error
(Preskill, 2018; Wang et al., 2017). This issue makes the correlation coefficient of fake data higher.
Figure 10 shows the correlation under fake data. This correlation is higher than the correlation in Figure

S.

Insert <Figure 10> here

We apply the same methodology in Section 4.2 using this fake data. Based on the weights
applied to the portfolio in Section 4.2, returns and risks are measured and ranked by applying them to
fake data. Figure 11 shows the rank of 10,000 random portfolios by measuring the Sharp Ratio. Using
real market data, a higher weighting of Apple would result in a higher Sharp Ratio, and a higher
weighting of Amazon would result in a lower Sharp Ratio. This contrasts the higher Sharp Ratio when

Google's proportion is higher when using actual market data.

Insert <Figure 11> here

We show the return and risk of the portfolio created in this way on a scatter plot in Figure 12.



This figure shows that an efficient frontier using real data has a higher return with less risk.

Insert <Figure 12> here

6. Conclusion

We train a GuGAN model and compare it to Markowitz. This reference approach is deterministic and
will always produce the same result given the training data. Proceed as follows. Given a trained QuGAN
model, we analyze the return risk of QuUGAN diversification during a test period and compare the results
with the diversification proposed by Markowitz. Markowitz and QuGAN diversification at risk are
associated returns. QuUGAN can overcome Markowitz's difficulty in modeling long-term situations.
QuGAN has two drawbacks. GANs are known to be unstable, and adversarial training often does not
converge toward equilibrium due to the nonlinear dynamics introduced by the differential equations
that implement the learning algorithm. Quantum computers also do not exist as perfect machines and
assume quantum errors.

Nonetheless, this work presents a pioneering study on portfolio analysis using QuGAN. We
use quantum computers as a diversification strategy to optimize portfolios to minimize risk and
maximize expected returns. The key novelty is that the proposed approach addresses a growing problem
in the high-efficiency market. That is, there is no need to predict medium- to long-term price trends,
assuming that all currently available information is already indicated in current asset prices.

Results show clear advantages in the Cutting Edge of Portfolio Optimization Theory. In
particular, the proposed approach can expose end-users to the possibility of choosing a target risk level
and suggest specific diversification in current market conditions.

This study has limited access to actual quantum computers. In future research, it is expected

that using real quantum computers will improve the learning and accuracy of vast data.
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<Appendix> Table & Figure

Table 1. Summary of statistics
This table reports the daily stock return summary statistics from January 2019 to December 2021. The
number of observations is 755.

index Apple Google Amazon
count 755 755 755

mean 0.002269 0.001526 0.001211
std 0.021506 0.018668 0.018513
min -0.128647 -0.116341 -0.079221
25% -0.00751 -0.006339 -0.00841
50% 0.001786 0.001694 0.00134
75% 0.013234 0.010331 0.010611
max 0.119808 0.096202 0.079295

Figure 1. Efficient frontier with risky assets
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Figure 2. Diagram of QuGAN algorithm
This figure is a schematic diagram of a series of processes for QuGAN.
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Figure 3. Quantum circuit of QuGAN
This figure is a schematic diagram of a series of processes for QuGAN.
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Figure 4. Time Series of stock price and daily return
This figure shows the time series of the stock price and daily return from January 2019 to December

2021.
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Figure 5. Correlation between 3 stocks
This figure shows the correlation matrix with real market data from January 2019 to December 2021.
When building a portfolio, it should be made up of assets with low correlations. This is because it can
reduce volatility while maintaining maximum returns. The heat map below is the correlation coefficient
for three stocks: Apple, Google, and Amazon. The closer the correlation coefficient is to 1, the more
assets move together. The correlation coefficient between Apple and Google is the highest at 0.12; the
correlation is close to 0.
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Figure 6. Ranking of optimal portfolios by Sharp Ratio
This figure shows the ranking of 10000 random portfolios by measuring the Sharp Ratio. In the case of
using actual market data, the higher the proportion of Apple, the higher the Sharp Ratio, and the higher
the proportion of Amazon, the lower the Sharp Ratio.
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Figure 7. Optimal portfolio with real market data
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Figure 8. Histogram of daily return with real market data
This figure shows the histogram of daily returns from January 2019 to December 2021. All histograms

have the shape of a normal distribution.
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Figure 9. Histogram of daily return with QuGAN
This figure shows the histogram of daily returns with QuGAN. The sample is 1510 data.
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Figure 10. correlation of three assets with QuGAN
This figure shows a correlation matrix with fake market data. The heatmap below shows the correlation
coefficients for Apple, Google, and Amazon stocks. QuGAN's correlation is higher than that of real
market data.
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Figure 11. Ranking of Optimal Portfolio by Sharp Ration with QuGAN
This figure shows the ranking of 10000 random portfolios by measuring the Sharp Ratio. In the case of
using actual market data, the higher the proportion of Apple, the higher the Sharp Ratio, and the higher
the proportion of Amazon, the lower the Sharp Ratio.
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Figure 12. Return per unit risk with QuGAN
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