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Ⅰ. 서   론
우리 경제는 고령화의 진전과 계약성 저축이 증가함에 따라 안정적인 장기투자 

수단에 대한 수요가 높아지는 가운데 금융기관들도 자산 운용 대상 및 위험관리 

수단으로서의 채권의 수요가 증가하고 있다. 이러한 상황을 감안할 때 채권시장에 

대한 전반적인 이해와 채권가격을 결정짓는 이자율 기간구조를 살펴보는 것은 상

당히 중요한 과제이다. 특히 2008년 글로벌 금융위기 이후 과도하게 팽창된 유동

성이 인플레이션을 견인함에 따라 이자율이 상승함에 따라 채권 투자에 대한 수요

가 증대하는 가운데 향후 이자율 움직임에 대한 정책 당국과 민간 투자자들의 관

심이 고조되고 있다.

이자율 기간구조(term structure of interest rates)는 채권의 수익률(만기수

익률, 현물이자율, 선도이자율)과 만기 사이의 관계를 의미한다. 이자율 기간구조

는 어떤 특정 시점에서 향후 시장이 예상하고 있는 이자율 변화의 크기와 방향에 

대한 정보를 담고 있으며 이러한 정보에는 미래 경제상황에 대한 경제주체들의 다

양한 기대가 반영되어 있다. 또한 모든 금융자산의 가격결정에는 이자율이 직간접

적으로 영향을 미치고 있다는 점을 감안할 때 정확하고 신뢰성 높은 이자율 기간

구조는 금융상품 및 금융시장의 발전과 긴밀하게 연관되어 있다. 즉 금융시장 참

가자들은 이자율 기간구조를 채권 포트폴리오의 운영이나 이자율 및 신용 관련 파

생상품의 가치 평가, 이자율 위험의 관리 또는 헤징의 수단으로서 사용하고 있다. 

또한 통화정책 당국자의 입장에서도 이자율 기간구조는 시장에서 예상하고 있는 

미래의 이자율 및 인플레이션에 대한 예측에 대한 정보를 담고 있으므로 향후 통

화정책의 방향을 설정하는 데 유용한 정보 변수로서의 기능을 수행할 수 있다. 

Vasicek(1977) 이후 파생금융상품의 가치 평가에 대한 관심이 증대되는 과정

에서 이자율 기간구조에 대한 많은 연구들이 진행되어 왔다. 특히 Cox, Ingersoll 

and Ross(1985)가 투자자의 위험 기피 및 시간 선호 등을 고려한 일반균형

(general equilibrium)하에서의 단기이자율의 확률적 움직임을 이론적으로 도출함

에 따라 이자율 기간구조에 대한 이론적 연구는 비약적으로 발전하게 되었다. 이

후 Duffee and Kan(1996), Dai and Singleton(2000), Duarte(2000), Kim 

and Orphanides(2006) 등에서는 채권 수익률에 영향을 미치는 비관측 상태변수

를 상정하고 이를 이용하여 이자율 기간구조를 추정하는 모형을 소개하였다. 최근 
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들어서는 이러한 상태변수가 거시변수와의 연관성이 강조되는 연구가 진행되고 있

는데 대표적인 연구로는 Bekaert, Cho and Moreno(2005), Ang, Piazzesi and 

Wei(2006), Rudebusch and Wu(2008), Doh(2009) 등을 들 수 있다.

본 연구에서는 우리나라 국고채와 신용채(회사채 AA-등급)를 이용하여 무차

익거래 조건하에서 3요인 선형 가우시안 이자율 기간구조모형을 추정하고 이를 이

용하여 최근의 정책금리 변경의 효과성에 대해 진단해 보고자 한다. 2015년 이후 

최근까지 한국은행의 기준금리는 19차례나 변경됨에 따라 2015년 3월의 1.75%

에서 2023년 1월에는 3.5%로 상승하였다. 기준금리의 총량적인 변화를 8년 정도

의 기간에 걸쳐 1.75%p 상승하였으나 이를 기간별로 분해해 보면 2015년 3월에

서 2020년 5월까지는 추세적인 금리 하락 기조가 만연한 반면 이후에는 금리 상

승 기조로 반전하여 최근의 금리 수준에 이르렀다.1) 

이자율 기간구조에서의 장기이자율은 미래 기대 단기이자율과 인플레이션 혹은 

유동성 리스크에 대한 보상을 나타내는 기간프리미엄(term premium)으로 분해할 

수 있다.  과  을 각각 시점에서의 무이표채(zero-coupon bond)에 대

한 기 만기 이자율(장기이자율) 및 1기 만기 이자율(단기이자율)이라고 하면 장

기이자율은 다음과 같이 기대 단기이자율의 평균과 기간프리미엄(TP)으로 분해할 

수 있다. 

   



  

  

       

이자율 기간구조의 이론 중 하나인 기대가설하에서는 기간 프리미엄은 상수, 

즉    이므로 장기이자율의 변화는 미래에 예상되는 단기이자율의 

평균의 변화에서 비롯되는 것으로 인식되었다. 단기이자율은 중앙은행의 정책금리

에 가장 영향을 많이 받기 때문에 기대가설하에서는 장기이자율은 결국 중앙은행

의 미래 정책금리에 대한 기대를 반영하는 것을 의미하게 된다. 중앙은행의 정책

금리는 경기 및 물가에 영향을 받아 결정되므로 결국 장단기 이자율 스프레드가 

거시경제에 대한 기대 정보가 반영되게 된다. 

그러나 Fama and Bliss(1987)의 연구 결과에 따르면 채권의 기간프리미엄은 

시변(time-varying)하는 것으로 알려졌고 이에 따라 전통적인 기대가설은 더 이

1) 2020년 5월 28일에는 기준금리가 0.5%로 최저치를 보인 이후 2021년 8월 26일에 기준금리가 
0.75%로 상승한 이후 2023년 1월 13일에는 3.5%를 보이고 있어 금리 하락 후 상승 반전이 가빠
르게 진행되고 있음을 알 수 있다. 
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상 성립하는 않는 것으로 밝혀졌다. Rudebusche et al.(2007), Ludvigson and 

Ng에서는 기간프리미엄이 경기 역행성을 가진다고 주장하고 있다. 한편 

Gurkaynak and Wright(2012)에서는 기간프리미엄이 인플레이션과 양(+)의 상

관관계를 가진다고 주장하는 등 최근에는 미래의 기대 단기이자율보다는 기간프리

미엄의 경기 예측력이 높다는 분석 결과가 다수를 이루고 있다. 

본고에서는 먼저 장단기 이자율 스프레드를 기대 스프레드와 기간프리미엄으로 

분해하여 최근의 국고채 및 신용채 시장에서의 장단기 금리 스프레드가 어느 요인

에 의해 더 큰 영향을 받았는지를 살펴보고자 한다. 이와 더불어 정책금리 변경 

시점을 전후하여 정책금리의 변동이 주로 미래의 기대 단기이자율에 영향을 미치

는지 아니면 기간프리미엄에 영향을 미치는지도 같이 살펴보고자 한다. 이러한 이

자율 분해를 통해 중앙은행의 정책금리 변경이 실물 및 금융에 미치는 경로에서 

어떤 채널이 더 유효하고 의미있는지를 실증적으로 제시하는 것은 금리 정책의 유

용성을 제고하는데 기여할 수 있을 것이다. 

이자율 기간구조와 관련된 국내의 연구로는 이병근·현정순(2002)은 

Heath-Jarrow-Morton 모형을 이용하여 통화안정증권을 기준으로 수익률 곡선

을 추정하였다. 한편 김명직·장국현(2000)에서는 다요인 CIR모형을  이용하여 

통화안정증권을 통해 수익률곡선을 추정한 바 있으며 김명직·신성환(2001)에서

는 상태-공간모형을 이용하여 국민주택채권을 기준으로 수익률곡선을 추정한 바 

있다. 이상의 연구는 수익률곡선의 추정에 일차적인 관심을 가지고 있어서 구체적

으로 추정된 수익률곡선이 경제현상을 어떻게 설명할 수 있는 지에 대한 논의는 

결여되어 있었다. 엄영호·이준희·지현준(2007)은 2요인 확장 가우시안 모형을 

통해 수익률 곡선을 추정하였으며 정책금리의 변경이 단기이자율 및 단기이자율의 

정상상태 평균에 미치는 영향에 대해 분석하였는데, 분석 결과 우리나라의 단기이

자율은 콜금리 인하의 경우에서의 반응 정도가 인상의 경우보다는 더 크게 나타난

다고 주장하였다. 송준혁(2009)에서는 3요인 무차익거래 모형을 상정하여 이자율

기간구조를 추정하고 단기이자율 형성에 있어서의 정책금리의 효과보다는 신호 기

능(signalling) 측면에서 정책금리의 유효성을 살펴본 바 있다. 윤재호(2020)에서

는 이자율 스프레드가 산업생산 증가율, 소비자물가 상승률, 생산갭 등 주요 거시

경제변수들에 대한 유의한 예측력을 가지고 있었다. 그러나 인플레이션 타겟팅 강

화로 인해 이자율 스프레드의 경기 예측력이 전반적으로 저하되고 있으나 기간프

리미엄의 경기 예측력은 여전히 유의하다고 분석한 바 있다. 
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아래에서의 논문 구성은 다음과 같다. 먼저 2장에서는 3요인 무차익거래 조건

하에서의 이자율 기간구조 모형을 설정하였다. 본고에서는 국고채와 같이 무위험

채권만을 대상으로 한 모형과는 차별화하여 국고채와 신용채를 모두 포함한 이자

율 기간구조 모형을 상정하고자 한다. 3장에서는 사용된 자료와 추정 결과를 제시

하였다. 그리고 4장에서는 이자율 기간구조에서 도출된 단기이자율 및 현물수익률

을 이용하여 최근의 통화정책의 효과성에 대한 분석을 시도하였으며 결론은 5장에 

제시하였다. 

II. 이자율 기간구조 모형
이자율기간구조는 모형의 형태와 변수의 선정이라는 두 가지 방향에 초점을 모

을 수 있다. 우선 모형의 형태와 관련해서는 재무이론에서 다루는 초단기 이자율

(instantaneous short rate)을 확률과정(stochastic process)으로 가정하고 분석

하고자 한다. 이러한 확률과정에서 가장 많이 사용되는 모형은 

Ornstein-Uhlenbeck 과정이라고 부르는 Gaussian process인데 본고에서도 이 

과정을 기본으로 모형을 설정한다. 변수의 선정과 관련해서는 거시변수를 이용하

여 모형화를 할 수도 있으나 본고에서 다루는 내용이 할인율 갭인 점을 감안하여 

순수하게 금리 자료만을 사용하고 금리의 변동을 야기하는 은닉인자(latent 

factor)로서의 상태변수를 이용하는 요인모형을 구성하였다. 

상태변수와 관련해서 모형 설정 이전에 결정해야 할 것은 상태변수의 개수인데 

많은 연구에서는 3요인이 이자율기간구조의 대략 90%를 설명하고 있는 것으로 

알려져 있고 요인이 증가할수록 모형 설명력은 증가하나 모형 예측력은 감소하는 

특성을 가지고 있으므로 본고에서도 3요인을 상태변수의 한 확률적 이자율 모형인 

선형 이자율기간구조 모형(3-factor affine term-structure model)을 설정하였

다. 

동 모형의 핵심은 상태변수의 동학(dynamics)과 위험의 시장가격을 어떻게 설

정하는 것이다. 국채 수익률과 회사채 수익률(AA- 등급)의 모형화를 위해 초단기 

무위험이자율(risk-free instantaneous short rate), 와 AA-에 해당하는 초

단기 위험이자율(risky instantaneous short rate) 를 상태변수의 선형결합

으로 가정하였다. 먼저 는 아래의 식과 같이 2개의 상태변수  , 와 상수항
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의 합으로 가정한다. 

    

또한 는 상수항, 초단기 무위험 이자율 및 1개의 상태변수 의 합으로 가

정한다. 여기서 제시된 세 번째 요인인 은 신용위험을 결정하는 상태변수의 기

능을 담당한다. 

      

상태변수     은 아래와 같은 가우시안 동학(Gaussian 

dynamics)을 갖는다고 가정하였다. 

     

여기에서  는 3×1 벡터(vector)이며, 는 3×3 하삼각행렬(lower 

triangular matrix),      
는 3×1 벡터 브라우니언 모션

(Brownian motion)을 의미한다. 초단기이자율은 이론적인 개념으로 찰나의 순간

에 만기가 도래하는 채권에 적용되는 이자율로 현실에서는 관찰되지 않는 이자율

이다. 따라서 초단기이자율은 이론적 정합성을 위해 도입된 가상적인 이자율인데 

이것이 존재한다는 가정하에서 확률적 할인요인(SDF, Stochastic Discount 

Factor) 또는 가격핵(pricing kernel)이 다음과 같은 확률과정을 가지는 것으로 

가정한다. 




    ′

여기서 위험의 시장가격(market price of risk)을 결정하는 는 상태변수에 

대한 선형결합으로 다음과 같이 표현할 수 있다.

   

여기서 와 는 3×1 벡터이며, 은 3×3 행렬로서 비 대각원소들

(off-diagonal terms)이 모두 0인 대각행렬(diagonal matrix)이다. 이 식이 의미

하는 바는 위험의 시장가격이 매 시점 의 상태변수  의 함수로 표현된다는 것

으로 시변 위험프리미엄(time-varying risk premium)의 포착을 가능하게 하며, 

또한 본 모형의 상태변수 가 확률적으로 움직이므로 위험프리미엄이 시간이 흐

르면서 그 부호(sign)를 바꿔 취할 수도 있음을 의미한다. 

만기가 인 할인채의 시점에서의 가격은 지금까지 가정한 선형모형의 무차익
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거래조건(no arbitrage condition)에 의해 아래의 식과 같이 지수선형

(exponential affine)형태의 방정식을 갖게 된다는 것이 알려져 있다.2)

   exp   ′  
여기서    로 만기까지 남은 기간을 의미한다. , 는 아래와 같

은 연립상미분방정식(system of ordinary differential equations)의 해

(solution)로 표현된다. 




   ′ 

′




   ′ 

여기서 는 국고채일 경우에는 이고 신용채일 경우에는   이 되고, 

은 국고채일 경우에는  ′이고 신용채일 경우에는  ′이 된다. 위 

식의 채권 가격식과 상태변수의 지수 선형성, 그리고 가우시안 상태변수, 의 특

징을 이용하면 실제 채권 자료를 통해 3요인 선형이자율 기간구조 모형의 모수들

을 MLE를 통해 추정할 수 있다.

이자율에서의 기간프리미엄은 다음의 두 가지 방식으로 도출된다. 먼저 기 만

기에 해당하는 무차익거래 조건하의 기간프리미엄은 다음과 같다.

      


  

  

    

한편 선도이자율을 고려할 경우 기간프리미엄은 다음과 같이 정의될 수 있다. 


        

이론적으로는     
가 성립되어야 하나 실제 자료를 이용한 추

정에서는 이들 관계가 성립되지 않는 경우가 자주 목격된다. 본고에서는 두 가지 

형태로 정의된 기간프리미엄을 모두 제시하고자 한다. 

Ⅲ. 분석 자료 및 추정

1. 분석 자료

2) 이에 대한 자세한 설명은 Duffie and Kan(1996), Dai and Singleton(2000)을 참고하기 바란다. 
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이자율기간구조 모형 추정을 위해서 표본기간 2015년 1월부터 2022년 8월까

지의 국고채와 AA+ 등급 무보증 회사채의 주별 자료를 이용하였다.3) 나이스 

P&I에서 제공받은 국고채와 AA+ 등급 회사채는 각각 6개의 만기(1, 2, 2.5, 3, 

4, 5년물)의 매주 수요일 종가 자료를 이용하여 총 375개의 관측치를 사용하였다. 

[그림 1]을 보면 2015년 이후 지속적으로 하락해 왔던 채권금리가 2021년 후

반에 들어서면서 모든 만기에서 상승세로 반전되고 있음을 알 수 있다. <표 1~4>

는 국고채와 AA+, AA0, AA- 등급 회사채의 기초통계량을 보여주고 있다. 

Jacque-Bera 정규분포 검정 결과 모든 수익률에서 정규성이 기각되고 있는 것으

로 나타났다. 채권 수익률의 왜도(skewness)는 대부분 정규분포에서 벗어나 오른

쪽으로 쏠린 우측 편포(skewed to the right) 특성을 보이고 있다. 채권 수익률

의 첨도(kurtosis)의 경우 국고채 및 신용채의 모든 만기에서 양(+)의 값을 가지

고 있어 정규분포보다 중심이 높은 뾰족한 모습을 가지는 것으로 나타났다. 

3) 나이스 P&I로부터는 신용채로서 AA+, AA0, AA- 등급의 회사채 자료를 제공받았으나 분석에서
는 AA-등급의 회사채를 이용하였다. 해당 자료는 일별로 입수하였으나 일별 자료를 이용할 경
우 시계열의 자기상관이 높아 모수 추정이 적절히 되지 않아 주별 자료로 변환하여 사용하였다. 
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[그림 1] 국고채 및 신용채 이자율 시계열 구조

      자료: NICE P&I
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　만기 평균 표준편차 자기상관 왜도 첨도
Jarque-Bera 
Test(p-value)

Y12
1.452 0.492 1.003 0.338 4.417

0.001
(0.030) (0.027) (0.002) (0.197) (0.400)

Y24
1.626 0.534 1.002 0.954 5.151

0.001
(0.032) (0.034) (0.003) (0.161) (0.492)

Y30
1.661 0.537 1.002 0.991 5.052

0.001
(0.032) (0.034) (0.003) (0.154) (0.497)

Y36
1.692 0.542 1.002 1.035 4.877

0.001
(0.033) (0.034) (0.003) (0.135) (0.457)

Y48
1.818 0.540 1.001 1.063 4.696

0.001
(0.033) (0.033) (0.003) (0.130) (0.451)

Y60
1.882 0.533 1.001 1.063 4.525

0.001
(0.032) (0.032) (0.003) (0.128) (0.442)

주: 1) ( )안은 표준오차를, Y뒤의 숫자는 개월 수를 각각 의미한다. 

<표 1> 국고채 수익률 기초 통계량1)

(단위: %)

　만기 평균 표준편차 자기상관 왜도 첨도
Jarque-Bera 
Test(p-value)

Y12
1.767 0.530 1.005 1.620 8.275

0.001
(0.032) (0.045) (0.003) (0.188) (0.817)

Y24
1.944 0.598 1.004 1.838 7.688

0.001
(0.036) (0.055) (0.003) (0.136) (0.931)

Y30
1.988 0.609 1.003 1.809 7.330

0.001
(0.037) (0.056) (0.003) (0.132) (0.891)

Y36
2.078 0.610 1.003 1.680 6.641

0.001
(0.037) (0.053) (0.003) (0.127) (0.762)

Y48
2.146 0.602 1.003 1.673 6.589

0.001
(0.036) (0.051) (0.003) (0.130) (0.765)

Y60
2.285 0.586 1.003 1.476 5.841

0.001
(0.035) (0.045) (0.003) (0.130) (0.631)

주: 1) ( )안은 표준오차를, Y뒤의 숫자는 개월 수를 각각 의미한다. 

<표 2> AA+ 등급 회사채 수익률 기초 통계량1)

(단위: %)
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　만기 평균 표준편차 자기상관 왜도 첨도
Jarque-Bera 
Test(p-value)

Y12
1.807 0.526 1.005 1.601 8.263

0.001
(0.032) (0.045) (0.003) (0.191) (0.812)

Y24
1.986 0.595 1.004 1.804 7.592

0.001
(0.036) (0.054) (0.003) (0.136) (0.905)

Y30
2.029 0.605 1.003 1.784 7.280

0.001
(0.037) (0.055) (0.003) (0.132) (0.875)

Y36
2.119 0.607 1.003 1.663 6.594

0.001
(0.037) (0.052) (0.003) (0.126) (0.752)

Y48
2.195 0.600 1.003 1.635 6.468

0.001
(0.036) (0.050) (0.003) (0.129) (0.740)

Y60
2.351 0.586 1.002 1.449 5.753

0.001
(0.035) (0.044) (0.003) (0.131) (0.614)

주: 1) ( )안은 표준오차를, Y뒤의 숫자는 개월 수를 각각 의미한다. 

<표 3> AA0 등급 회사채 수익률 기초 통계량1)

(단위: %)

　만기 평균 표준편차 자기상관 왜도 첨도
Jarque-Bera 
Test(p-value)

Y12
1.845 0.518 1.005 1.613 8.305

0.001
(0.031) (0.043) (0.003) (0.191) (0.813)

Y24
2.033 0.590 1.004 1.867 7.769

0.001
(0.036) (0.054) (0.003) (0.136) (0.947)

Y30
2.077 0.603 1.003 1.823 7.367

0.001
(0.036) (0.055) (0.003) (0.132) (0.895)

Y36
2.162 0.607 1.003 1.693 6.667

0.001
(0.037) (0.052) (0.003) (0.126) (0.764)

Y48
2.270 0.597 1.003 1.602 6.359

0.001
(0.036) (0.049) (0.003) (0.129) (0.717)

Y60
2.460 0.581 1.002 1.421 5.630

0.001
(0.035) (0.043) (0.003) (0.131) (0.599)

주: 1) ( )안은 표준오차를, Y뒤의 숫자는 개월 수를 각각 의미한다. 

<표 4> AA- 등급 회사채 수익률 기초 통계량1)

(단위: %)
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자료의 구조를 자세히 알아보기 위해 아래에서는 주성분 분석(PCA)을 수행하

였다. 각 채권의 공분산행렬에 대해 특성근 분해(eigenvalue decom- position)

를 수행함으로써 주성분 요인과 요인별 기여도를 산출할 수 있다. 아래 [그림 2]

에서 보면 채권별 주성분 분석에서 1요인인 수준(level)의 경우에는 대체로 유사

한 모습을 보이는 반면 2요인인 기울기(slope)에서는 국고채와 회사채 간에는 명

확한 차이를 가진 것이 확인되며 회사채 내에서는 신용등급에 관계 없이 대체로 

유사한 모습을 가지는 것으로 나타났다. 이러한 결과는 국고채와 회사채의 수익률 

구조를 동시에 추정할 경우 수익률 구조에서 기울기를 설명하는 모수가 유의하게 

나타날 것임을 시사한다. 

[그림 2] 채권별 주성분 분석 결과

주성분 분석에서 도출한 3가지 요인의 시계열을 살펴보면 [그림 3]과 같은데 

이자율 동학은 대부분 수준 요인에 의해 주도되고 있어 기울기와 곡률 요인의 변

화는 거의 나타나지 않고 있음을 알 수 있다. 특히 기울기와 곡률 요인의 움직임

이 유사하게 분석되고 있어 이 두 요인을 모두 고려하여 모형을 설정할 실익이 높
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지 않고 분석 기간 동안 이자율의 만기별 구조는 상당히 편평한 모습을 가지고 있

음을 간접적으로 파악할 수 있다. 

[그림 3] 주성분 요인의 시계열 추이

주성분 요인의 시계열 추이에서 살펴본 정성적인 결과를 보다 정량화하여 요인 

개수의 선택을 결정하기 위해서 주성분 분석의 요인별 누적 기여도를 살펴볼 필요

가 있는데 분석 결과는 <표 5>에 제시되어 있다. 그 결과 채권별로 2요인까지만 

고려하더라도 채권 수익률의 변동의 99% 이상을 설명하는 것으로 나타나 두 개의 

요인만을 고려해도 충분할 것으로 해석된다. 따라서 신용위험을 감안한 이자율 기

간구조 모형을 설정하기 위해서는 채권별로 2요인이 필요하고 국고채와 회사채 간

의 신용도 차이를 반영하는 요인이 추가적으로 필요하므로 3요인을 고려한 선형 

이자율모형으로도 이자율 구조를 충분히 반영할 수 있을 것으로 사료된다. 

요인 KTB AA+ AA0 AA-
1 0.9027 0.9421 0.9415 0.9408
1+2 0.9952 0.9945 0.9944 0.9942
1+2+3 0.9980 0.9980 0.9980 0.9980

<표 5> 주성분 분석의 요인 누적 기여도

(단위: %)
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2. 추정 결과

국고채와 AA+와의 금리 차이가 크지 않아 상태변수의 식별이 용이하도록 하

기 위해 모수 추정에서는 국고채와 AA-등급 회사채 자료를 사용하였다. <표 6>

에서는 3요인 선형 이자율모형의 모수를 추정한 결과를 제시하였다. 대부분의 모

수 추정값이 통계적으로 유의한 수준을 보였으나 상태변수 모수인  ,  ,   

및 위험의 시장가격 모수인 의 경우는 통계적인 유의성을 가지지 못하는 것으

로 나타났다. 위험의 시장가격 모수에서 가 다른 모수에 비해 큰 값을 보이는 

것으로 나타났는데 이는 두 번째 상태변수가 이자율기간구조에서 기울기를 조절하

게 되는데 2015년 이후 장기간 이어진 저금리로 만기별 이자율 변화가 크지 않기 

때문에 발생한 것으로 보인다.
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변수 모수 추정치 표준오차 p-value

무위험
이자율



 0.2055 0.0345 0.0000

 0.0096 0.0012 0.0000

 0.0086 0.0007 0.0000

위험
이자율



 -0.0408 0.0137 0.0032

 0.9044 0.0302 0.0000

 0.0023 0.0002 0.0000

상태
변수



 0.0411 0.0486 0.3985

 5.2857 0.4679 0.0000

 1.3897 0.3453 0.0001

 0.6942 0.3352 0.0391

 0.2527 0.1588 0.1124

 0.0969 0.0913 0.2893

위험의 
시장
가격



 -0.5213 0.2564 0.0428

 34.7936 0.6711 0.0000

 -5.7180 0.2938 0.0000

 0.0154 0.0485 0.7510

 1.2012 0.3373 0.0004

 0.2423 0.0907 0.0079

<표 6> 3요인 선형 이자율기간구조 모형 추정 결과 

3요인 선형이자율 모형에 의한 추정 결과를 바탕으로 추정한 국고채와 회사채

의 초단기이자율의 시계열 추이 및 초단기이자율 스프레드를 [그림 4]에 도시하였

다. 무위험채와 신용채 간의 초단기이자율 스프레드는 대체로 2020년 이후를 기

점으로 확대되는 양상을 보이고 있으며 최근에는 스프레드가 1%p 정도 수준인 것

으로 분석되었다. 이러한 스프레드의 차이는 신용 위험에 기반한 것으로 2020년 

이후의 유동성 압박이 신용 위험으로 전이되고 있음을 시사한다. 
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[그림 4] 국고채 및 회사채(AA-) 초단기이자율의 시계열 및 스프레드 추이

한편 국고채와 회사채의 초단기이자율과 연립상미분방정식을 풀어 도출한 

과 을 이용하여 3년물 및 5년물 무위험채권 및 신용채의 수익률과 실제 데이

터를 비교한 결과를 [그림 5]와 [그림 6]에 도시하였다. 각 만기별로 추정 모수를 

이용한 추정 수익률과 실제 수익률이 유사한 패턴을 보이고 있어 추정 작업은 대

체로 적절히 수행된 것으로 판단된다. 추정 작업의 정밀도를 확인하기 위해서 표

본 내 적합도와 표본 외 예측력을 살펴보는 작업을 수행하는 것도 의미가 있지만 

본고의 목적이 어떤 모형의 예측력이 높은지를 평가하는 것이 아니라 이자율 기간

구조를 분해하고 통화정책의 효과성을 살펴보는 것이므로 대표적인 만기에 대한 

실제 및 추정 현물이자율을 비교하는 것으로 모형의 설명력을 대신하고자 한다. 
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[그림 Ⅲ-5] 3년 만기 국고채 및 회사채 실제 현물이자율과 추정 현물이자율 

[그림 Ⅲ-6] 5년 만기 국고채 및 회사채 실제 현물이자율과 추정 현물이자율 
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분석에 사용된 자료를 기준으로 동일 만기의 신용채와 무위험채의 이자율 스프

레드(=회사채국고채)를 살펴보면 <표 7>에서는 만기에 따라 스프레드

의 평균은 (0.39%, 0.60%)의 범위를 가지고 있으며 높은 자기상관성과 우측 편

포 및 높은 첨도를 가지고 있음을 알 수 있다. 

　만기 평균 표준편차 자기상관 왜도 첨도

Y12
0.3931 0.1695 0.9965 1.6022 5.1688

(0.0223) (0.0074) (0.0200) (0.2984) (1.3795)

Y24
0.4529 0.1426 0.9974 1.6964 5.5753

(0.0187) (0.0055) (0.0210) (0.3125) (1.5256)

Y30
0.4820 0.1323 0.9979 1.7220 5.6904

(0.0174) (0.0048) (0.0212) (0.3179) (1.5731)

Y36
0.5090 0.1233 0.9984 1.7421 5.7821

(0.0162) (0.0042) (0.0212) (0.3228) (1.6136)

Y48
0.5567 0.1082 0.9995 1.7739 5.9332

(0.0142) (0.0033) (0.0211) (0.3319) (1.6830)

Y60
0.5963 0.0962 1.0006 1.8002 6.0668

(0.0126) (0.0026) (0.0209) (0.3400) (1.7430)

주: 1) ( )안은 표준오차를, Y뒤의 숫자는 개월 수를 각각 의미한다. 

<표 7> 만기별 신용채 금리 스프레드 분석: 추정 자료1)

(단위: %)

Ⅳ. 기간프리미엄 추정 및 분석
여기서는 3장에서 추정된 결과를 바탕으로 기간프리미엄과 선도금리 기간프리

미엄을 각각 도출하고자 한다. 다수의 선행 연구에서 기간프리미엄은 실물경기 역

행성을 가지고 있는 것으로 주장하고 있으므로 본고에서는 이러한 연구 결과를 바

탕으로 높은 기간프리미엄이 경기 불황을 예고하는 지표로 인식하고 분석을 수행

한다.4) 

4) 윤재호(2020)에서는 기간프리미엄이 24개월 이후의 산업생산 증가율과 생산갭의 예측에 유의한 
예측력을 가지는 반면 소비자물가 상승률의 예측에는 유의하지 않는 예측력을 보였다고 설명한
다. 
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아래 [그림 7-8]은 3년 만기 무위험채와 신용채를 대상으로 (무이표채) 현물

이자율, 기대 단기이자율과 두 가지 형태의 기간프리미엄을 도시한 것이다. 두 그

림 모두에서 관찰되는 특징은 2021년 이후 기대 단기이자율을 상승하는 반면 기

간프리미엄은 하락하는 양상이 관찰됨을 알 수 있다. 기간프리미엄이 24개월의 예

측 시계로 경기 역행적인 예측력을 가지고 있음을 감안할 때 2023년 정도에는 경

기가 상승 국면으로 반전할 것임을 채권시장에서는 예측하고 있음을 알 수 있다. 

기대 단기이자율의 경우는 2021년 이후 지속적인 상승세를 나타내고 있는데 단기

이자율이 중앙은행의 정책금리에 영향을 받는 부분이 크다는 점을 감안하며 시장

에서는 중앙은행의 정책금리 인상이 당분간은 지속적으로 이어질 것임을 예상하고 

있음을 알 수 있다. 따라서 2021년 이후 관찰되는 금리 상승은 유동성이나 인플

레이션 위험에 대한 보상으로서의 기간프리미엄보다는 정책금리 인상에 대한 예상

을 반영한 것으로 해석된다.5)

이러한 결과의 강건성을 살펴보기 위해 [그림 9-10]에서는 5년 만기 무위험

채와 신용채를 대상으로 현물이자율, 기대 단기이자율 및 기간프리미엄을 분석해 

보았다. 구체적인 금리 수준을 제외하고 각 시계열들의 변화하는 양상을 보면 대

체로 3년 만기물과 유사한 행태를 보이고 있음이 관찰된다. 이러한 결과는 최근의 

금리 상승은 경기 불황에 대한 우려보다는 중앙은행 정책금리 인상에 의해 주로 

견인된 것임을 시사한다. 

5) 최근 유동성 위기를 전면에 부각시킨 강원도 레고랜드 사태는 2022년 9월 28일에 발생하여 분석 
자료에는 이 기간이 포함되지 않았다. 
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[그림 7] 3년 만기 무위험채의 현물이자율, 기대 단기이자율 및 기간프리미엄

[그림 8] 3년 만기 신용채의 현물이자율, 기대 단기이자율 및 기간프리미엄
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[그림 9] 5년 만기 무위험채의 현물이자율, 기대 단기이자율 및 기간프리미엄

[그림 10] 5년 만기 신용채의 현물이자율, 기대 단기이자율 및 기간프리미엄
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Ⅴ. 정책금리 변경의 효과 분석
여기서는 우리나라 중앙은행의 정책금리 변경의 효과성에 대해 살펴보고자 한

다. 여기서 설명하는 효과성이란 정책금리의 변경이 단기이자율을 통해 수익률곡

선을 변화시킴으로써 장기이자율의 변화를 야기하였는지를 평가하는 것이다. 

한국은행의 기준금리는 2015년 3월 12일 종전의 2.0%에서 25bp 인하된 이

후 2022년 7월 13일까지 총 15차례의 금리 변동을 경험하였다.6) 특히 기준금리

는 2021년 8월 26일에 이전보다 25bp 인상되어 0.75%를 기록한 이후 5차례에 

걸쳐 지속적인 인상되어 왔으며 2022년 7월 13일에는 빅스텝(50bp) 인상을 통

해 최종적으로는 2.25%에 이르렀다. 

연도 월/일
기준금리

(%)

2015
3/12 1.75
6/11 1.50

2016 6/9 1.25
2017 11/30 1.50
2018 11/30 1.75

2019
7/18 1.50

10/16 1.25

2020
3/17 0.75
5/28 0.50

2021
8/26 0.75

11/25 1.00

2022

1/14 1.25
4/14 1.50
5/26 1.75
7/13 2.25

주  : 음영 부분은 기준금리 인하 시점
자료: 한국은행

<표 8> 한국은행 기준금리 

추이(2022. 8. 24일 현재)

[그림 11] 한국은행 기준금리

자료: 한국은행

6) 한국은행은 이후에도 기준금리를 지속적으로 인상해 왔으나 본고에서는 분석 자료 기간에 한정
하여 기준금리 변동을 인식하고 있다는 점을 주지하기 바란다. 
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[그림 11]은 기준금리 인하 시점을 기준으로 전후 10일에 걸친 3년 만기 현물

이자율, 기대 단기이자율 및 기간프리미엄의 누적 증분을, [그림 12]는 기준금리 

인상 시점을 기준으로 전후 10일에 걸쳐 동일한 변수를 대상으로 누적 증분을 분

석한 사건 연구(event study)의 결과이다. 

두 사건 연구 결과에서 모두 기준금리의 인하 및 인상 시기에서 기대 단기이자

율은 3년 현물이자율과 동일한 방향으로 움직이고 있음이 관찰된다. 기대 단기이

자율은 선도이자율과 유사하게 현물이자율보다 높은 진폭을 보이고 있는데 이는 

단기이자율이 한계이자율(marginal rate of interest)의 특성을 가지고 있는 반면 

현물이자율은 평균이자율(average rate of interest)의 특성을 보이고 있기 때문

이다. 

최근의 금리 인상 시기를 기준으로 기대 단기이자율과 기간프리미엄의 움직임

에서 살펴보면 몇가지 특이한 사항이 관찰된다. 먼저 자료상 가장 최근의 금리 인

상 시기인 2022년 7월 13일의 경우에는 3년 만기 현물이자율의 누적 증분은 오

히려 하락하고 있다는 점이다. 이러한 현상은 인플레이션 억제를 위한 중앙은행의 

정책 기조와 중기적 시계에서의 부정적인 성장 전망을 시장에서 이미 예상하고 3

년물 금리에 이러한 예상이 선반영되었기 때문인 것으로 판단된다. (결과 분석은 

아직 미완성인 상태로 좀 더 추가해서 발표하도록 하겠습니다.)
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[그림 12] 기준금리 인하 전후의 3년 만기 현물이자율, 기대 단기이자율 및 

기간프리미엄의 누적 증분
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[그림 13] 기준금리 인상 전후의 3년 만기 현물이자율, 기대 단기이자율 및 

기간프리미엄의 누적 증분
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Abstract
Households are becoming increasingly heterogeneous. While previous studies have revealed
many important insights (e.g., wealth effect, income effect), they could only incorporate
two or three variables at a time. However, in order to have a more detailed understanding
of complex household heterogeneity, more variables should be considered simultaneously.
In this study, we argue that advanced clustering techniques can be useful for investigat-
ing high-dimensional household heterogeneity. A deep learning-based clustering method is
used to effectively handle the high-dimensional balance sheet data of approximately 50,000
households. The employment of appropriate dimension-reduction techniques is the key to
incorporate the full joint distribution of high-dimensional data in the clustering step. Our
study suggests that various variables should be used together to explain household het-
erogeneity. Asset variables are found to be crucial for understanding heterogeneity within
wealthy households, while debt variables are more important for those households that are
not wealthy. In addition, relationships with sociodemographic variables (e.g., age, education,
and family size) were further analyzed. Although clusters are found only based on financial
variables, they are shown to be closely related to most sociodemographic variables.

Keywords Household finance · Heterogeneous household · High-dimensional data ·
Clustering · Machine learning · Deep learning

1 Introduction

Households are becoming increasingly heterogeneous, due to increasing wealth inequalities
(Atkinson et al., 2011; Piketty, 2013), financial crisis (Krueger & Perri, 2006), or the COVID-
19 pandemic (Blundell et al., 2020; Dizioli & Pinheiro, 2021). Krueger et al. (2016) found
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that households in different segments of the wealth distribution had different reactions to
the 2007–2008 Global Financial Crisis, and Eichenbaum et al. (2021) reported that house-
holds have different COVID-19 pandemic mortality rates depending on their income levels.
Consequently, many researchers have investigated the heterogeneity of household finances
in various aspects. For example, heterogeneity in portfolio composition (Mankiw & Zeldes,
1991; Heaton & Lucas, 1997; Krusell & Smith, 1997; Case et al., 2005, 2011), income level
(Constantinides & Duffie, 1996; Krueger et al., 2016; Lucas, 1994; Ahn et al., 2018), wealth
level (Bricker et al., 2021; Case et al., 2005, 2011; Krueger et al., 2016), and demographics
(Campbell, 2006; Berton et al., 2018; Calvet et al., 2021; Das et al., 2020) have been identified
and analyzed.

However, Jappelli and Pistaferri (2014) and Krueger et al. (2016) pointed out the limita-
tions of existing studies that separately investigate household heterogeneity in each dimension
(e.g., income and wealth). That is, considering a few variables would not be enough to have
a more detailed understanding of complex household heterogeneity. Krueger et al., (2016,
p. 67) further noted that additional dimensions of household heterogeneity should be intro-
duced to “better capture the joint distribution of wealth, income, and expenditure we observe
in the data.”

Figure 1 illustrates the average asset allocation of Korean households with respect to
their wealth percentile from 2017 to 2020. Panel a of Fig. 1shows the results for the entire
dataset. The proportions of deposit savings and long-term rental deposits almost mono-
tonically decrease as households become wealthier. The proportion of residential housing
increases up to middle class households, but it suddenly decreases. Instead, the proportion
of nonresidential real estate increases. It is clear that the relationship between households’
asset allocation andwealth level is nonlinear. Panels b and c of Fig. 1 represent the results from
the bottom 20% and the top 20% income households, respectively. The relationship is clearly
not simplified even if we look at subgroups partitioned by income level. This shows why con-
ventional approaches would have difficulties in investigating the heterogeneity in household
finance, which involves nonlinear relationships that are entangled in a multi-dimensional
space.

Consequently, in this study, we perform a comprehensive analysis of household finance
heterogeneity in various dimensions using an advanced clustering method. Since household
wealth, income, and consumption are known to have skewed marginal distributions (Camp-
bell, 2006), it would be difficult to fit such data using standard probability distributions.
We believe that clustering methods can be helpful because these methods are specifically

Fig. 1 Average portfolio weights of Korean households in 2017–2020
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designed to find representative clusters based on the multidimensional joint distribution of
data points. Because household financial data would have a complex dependence structure
between a large number of items, deep learning-based and manifold learning-based dimen-
sion reduction techniques are employed along with conventional clustering methods. Many
studies have shown that deep learning andmanifold learningmethods are helpful for handling
complex nonlinear dependent structures (Bengio et al., 2012).

While we use only the financial aspects (as reported in the balance sheets) of households
to identify the representative clusters, the clusters are analyzed in terms of multiple criteria.
That is, the clusters are analyzed in terms of household demographics (age, gender, education,
family size, and employment) as well as households’ balance sheets (income, expenditure,
assets, and debt). Our analysis shows that financial heterogeneity is closely related to demo-
graphic heterogeneity.

Korean household finance and living condition survey data were used in this study. Annual
data from 2017 to 2019 consist of balance sheets (including income, expenditure, assets,
and debt) and demographics (including age, gender, education, and employment status of
householder, family size) of around 20,000 households each year. The Republic of Korea
has shown remarkable growth since the Korean War in the 1950s to become the world’s
10th largest economy in 2020 according to the World Bank (2021). However, such rapid
growth has been accompanied by various social issues. Currently, Korea has the world’s
lowest fertility rate (OECD, 2021) and severe inter- and intra-generational wealth inequality
compared to other developed countries (OECD, 2018). Hence, Korea offers a good example
of a clearer heterogeneity in household finance.

The remainder of this paper is organized as follows. Section 2 introduces the clustering
method employed in this study, Sect. 3 discusses the data and experimental setting, and Sect. 4
presents findings from the numerical experiments. Finally, Sect. 5 concludes the study.

2 Deep clustering

Consider a household i’s balance sheet data xi ∈ R
d , which consists of asset variables

xiA ∈ R
dA , debt variables xiD ∈ R

dD , and expenditure variables xiE ∈ R
dE . Hence, xi �

[xiA; x
i
D; x

i
E] ∈ R

d . Our purpose is to find k clusters that divide N households based on
their balance sheet data X ∈ R

N×d so that each cluster would contain households that are
similar in terms of their financial status. Hence, we apply clustering algorithms to households’
balance sheet data X ∈ R

N×d .
Clustering is one of the most popular unsupervised machine learning tasks that clusters

through the similarity of data points without any label information (i.e., uses an unlabeled
data). The objective of clustering is to maximize intra-group similarities and minimize inter-
group similarities. Clustering methods have been shown to be useful in various tasks, such
as images, medical, and finance (Ahmad & Khan, 2019).

The well-known clustering methods such as k-means, DBSCAN, hierarchical clustering,
and Gaussian mixture model (GMM) have been successfully employed in various fields.1

However, such conventional methods are not suitable for handling high-dimensional data.
Recently, many studies have shown that deep learning methods can be useful for enhanc-

ing clustering methods to effectively handle high-dimensional datasets. The so-called “deep
clustering” methods have been proposed. Ghasedi Dizaji et al. (2017) and Caron et al.

1 Saxena et al. (2017) andAhmed andKhan (2019) provide a comprehensive review of conventional clustering
algorithms.
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Fig. 2 N2D framework for deep clustering by McConville et al. (2021) (Created by the authors)

(2018) proposed clustering neural network models that utilize extracted important features
from high-dimensional image data using a convolution neural network and an autoencoder,2

respectively, which are jointly learned by interacting with conventional clustering methods
(e.g., k-means). Guo et al. (2017) and Mukherjee et al. (2019) proposed clustering methods
based on latent modeling using an autoencoder and generative adversarial networks,3 respec-
tively, and tested them on tabular data and image data. However, there was no significant
performance improvement compared to conventional clustering methods.

McConville et al. (2021) proposed a simple deep clustering framework called N2D that
directly uses conventional clustering algorithms (e.g., GMM) in a latent space found by deep
learning and manifold learning techniques (see Fig. 2). Unlike other deep clustering methods
mentioned earlier, the clustering step is separated from the dimension-reduction step. The
N2D approach has been shown to achieve similar or even better performance compared to
other deep clustering methods as well as conventional approaches. The key trick was to
combine deep learning and manifold learning techniques to reduce the dimensionality of
data by capturing complex nonlinear dependency structures. Therefore, we follow the N2D
framework proposed by McConville et al. (2021) to find representative clusters of household
balance sheet data.

For a household i’s balance sheet data xi , we first find its k-dimensional embedding
zi ∈ R

k via an autoencoder, and we further reduce it into a two-dimensional embedding
z′i ∈ R

2 via UMAP. Then, clustering is performed with the two-dimensional embeddings
z′i of all households (i.e., for all i). The following subsections will explain in detail the two
steps: (1) dimension reduction (autoencoder and UMAP) and (2) clustering (GMM).

2 Convolutional neural networks refer to neural networkswith specific structures that are known to be effective
for handling image data (see Alzubaidi et al. (2021) for more detailed information). Autoencoders refer to a
wide range of neural network models for dimension reduction tasks, and we will discuss these models further
in Sect. 2.1.1.
3 Generative adversarial networks (Goodfellow et al. 2014) are generative models that try to achieve high
performance via adversarial training of two different neural networks. Xia et al. (2021) provides a summary
of their variants and application examples.
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2.1 Dimension reduction for clustering

Dimension reduction techniques are incorporated in most deep clustering methods to
effectively handle high-dimensional data. The key to dimension reduction is to find low-
dimensional representations (or features) lying in a high-dimensional space, which is often
called latent modeling or feature extraction (Bengio et al., 2013).While other deep clustering
algorithms jointly optimize latent modeling (or feature extraction) and clustering iteratively,
McConville et al. (2021) separate the two tasks to simplify the overall process. However,
to retain (or even improve) the performance of other deep clustering methods, they fur-
ther divided the dimension reduction part into two. First, an autoencoder is used to find
mid-dimensional embeddings to capture the global features. Second, manifold learning tech-
niques, such as t-SNE and UMAP, are used to find low-dimensional manifolds to better
capture local features. McConville et al. (2021) argue that such an approach can find more
clusterable embeddings because both global and local features are crucial for clustering tasks.

2.1.1 Autoencoder

An autoencoder (AE) is a dimension reduction technique based on artificial neural networks
and is often referred to as a deep learning version of principal component analysis (PCA), one
of the most popular dimension reduction methods. While PCA is only able to capture linear
dependence structures within data, AE is known to capture complex non-linear dependencies
well (Bengio et al., 2013; Burges, 2010; Burges, 2010; Xie et al., 2016).

The AE is composed of an encoder function fE NC : Rd → R
k and a decoder function

fDEC : Rd → R
k . The encoder function fE NC is a mapping from high-dimensional data

X ∈ R
N×d with N samples and d features to corresponding embeddings Z ∈ R

N×k in a
k-dimensional latent space with k � d . The decoder function fDEC is a mapping from
embeddings Z ∈ R

N×k to the original data X ∈ R
N×d . AE is trained to minimize the

following reconstruction loss:
�AE � ‖X − fDEC ( fE NC (X))‖2F,

where ‖•‖2F is the Frobenius norm. While various neural network structures (e.g., convo-
lutional neural networks and recurrent neural networks) can be used for both encoder and
decoder functions, we use fully connected layers with a rectified linear unit (ReLU) for both
functions. More details regarding the architectural choices are discussed in Appendix A.

Hence, the entire household balance sheet data X ∈ R
N×d is reduced to Z ∈ R

N×k .
Note that the embeddings are not separately found for asset, debt, and expenditure variables.
Instead, each embedding incorporates all balance sheet variables so that the final clustering
is done based on the entire balance sheet, not just subsets.

However, embeddings Z ∈ R
N×k found by AE do not necessarily preserve distances

between data points X ∈ R
N×d in the original space, because AE is trained only in terms of

minimizing the reconstruction loss. For any two data points xi , x j ∈ R
d and their autoen-

coded embeddings zi � fE NC (xi ), z j � fE NC (x j ) ∈ R
k , there is no relationship between

d(xi , x j ) and d(zi , z j ), where d is an arbitrary distance measure. Then, autoencoded embed-
dings would not be appropriate for clustering because the objective of clustering is to find
similar data points.

Therefore, in theN2D framework, clustering is not performed on the auto-encoded embed-
dings. Instead, AE is used to find intermediate embeddings with its dimension k not being too
small, so that the distances in the original space are not fully lost. McConville et al. (2021)
recommend using the dimension of autoencoded embeddings k as the desired number of
clusters.
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2.1.2 UMAP: uniformmanifold approximation and projection

The manifold assumption in machine learning is that the observed data lie approximately on
a low-dimensional manifold, and manifold learning refers to non-linear dimension reduction
techniques based on such an assumption. Because a manifold is a topological concept in
which every point is locally connected, manifold learning techniques are known to capture
local features well. Many different models have been proposed, including isometric mapping
(Tenenbaumet al., 2000), locally linear embedding (Tenenbaumet al., 2000),modified locally
linear embedding (Zhang&Wang, 2007), Hessian eigenmapping (Donoho&Grimes, 2003),
and t-distributed stochastic neighbor embedding (Van derMaaten&Hinton, 2008).While the
last one (t-SNE) showed promising performance for complex datasets, it is often criticized
for being too locally focused and lacks scalability (McConville et al., 2021).

In this regard, uniform manifold approximation and projection (UMAP) was recently
proposed by McInnes et al. (2018), which is known to preserve the global structure as
well as the local structure of data through a cross-entropy cost function. Let us consider
a dimension-reduction task from Z ∈ R

N×k to Z′ ∈ R
N×2. In other words, we wish to

reduce k-dimensional dataset into two-dimensional embeddings. UMAP consists of three
steps. First, graph construction. In this step, a graphical representation of Z ∈ R

N×k is pre-
sented. The relationship between two data points zi , z j ∈ R

k is represented as a probability

pi | j � exp

(
−d

(
zi , z j

) − ρi

σi

)
,

where d is a distance measure, ρi is a local connectivity parameter, and σi is a normalization
factor. Here, ρi is set as the average distance from zi to its u nearest neighbors, where u
controls the balance between local and global structure. If u is low, the UMAP model would
focus on more detailed local structure, while a high u would ignore small details to represent
global structure. Then, the global probability between the two data points is computed as.

pi j � (
pi | j + p j |i

) − pi | jp j |i

Second, graph embedding. For the corresponding embeddings z′
i , z′

j ∈ R
2, the pairwise

probability qi j is computed as:

qi j � 1

1 + a‖z′
i − z′

j‖2b
,

where a and b are hyper-parameters, and ‖ • ‖ is a norm function. Finally, cross-entropy is
used as a loss function to find the optimal mapping fU M AP : Rk → R

2 from Z ∈ R
N×k to

Z′ ∈ R
N×2 from a fuzzy topological point of view. The cross-entropy loss function can be

expressed as follows:

�UMAP �
∑
i �� j

pi j log

(
pi j

qi j

)
+

(
1 − pi j

)
log

(
1 − pi j

1 − qi j

)

McConville et al. (2021) tested various manifold learning techniques (isomapping, t-
SNE, and UMAP) for their N2D framework, and N2D with UMAP demonstrated the best
performance. Therefore, we use UMAP to find the final two-dimensional embeddings Z′ ∈
R

N×2 from the intermediate embeddings Z ∈ R
N×k found by AE.
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2.2 Clustering via Gaussianmixture model

Finally, the Gaussian mixture model (GMM) is employed to find clusters for the two-
dimensional embeddings Z′ ∈ R

N×2 found by AE and UMAP. Consider a k mixture of
Gaussian distributions

p(z) �
k∑

i�1

πiN (z | μi , �i ),

where N (z | μi , �i ) is a multi-dimensional Gaussian distribution with mean μi and covari-
ance matrix �i , and πi is a weight coefficient with πi ≥ 0 and

∑k
i�1πi � 1. GMM finds

the optimal parameters of the above Gaussian mixture that are most likely for the given data.
That is, a log-likelihood given parameter θGMM

�GMM � ln p
(
Z′ | θGMM

) �
N∑

j�1

ln

{
k∑

i�1

πiN
(
z′

j |μi , �i

)}

is maximized with respect to θGMM. Subsequently, the resulting k Gaussian distributions
were considered as the optimal clusters.

Of course, conventional clustering methods would be subject to robustness issues with
respect to initial points. Since k-means or GMM all start from random initial points and are
not always guaranteed to converge to global optima, such clustering algorithms are often
built to run multiple times with different random initial points and select the best one among
them. We also use the same method to obtain more robust results.

3 Data andmodel

In this section, we describe our data and models (Sect. 3.1), and a simple analysis was
performed to determine the appropriate number of clusters (Sect. 3.2). Also, we compare
clusteringperformanceof the deep clusteringmethodwith other popular clustering algorithms
(Sect. 3.3).

3.1 Data and experimental settings

TheKorean household finances and living conditions survey datawere used in this study. This
survey is conducted annually by the National Statistical Office of Korea, the Bank of Korea,
and the Financial Supervisory Service of Korea to provide a solid ground for policymakers
to account for households’ financial soundness in terms of their level of income, assets,
liabilities, and expenditures. Since the survey instrument was revised in 2017, we used data
from 2017. The main analysis was done using survey data from 2017 to 2020. The total
number of respondent households during that period was 54,920, and the number of unique
households excluding multiple participation in different years was 26,907. In addition, the
2021 survey data of 18,187 households was used for out-of-sample analysis in Sect. 4.4. Note
that the annual survey is conducted around every March. Hence, for example, the survey in
2020 is mostly based on households’ financial activities in 2019. This means that our main
analysis in Sects. 4.1–4.3 was done prior to COVID-19, and the out-of-sample analysis in
Sect. 4.4 would show the changes after COVID-19.
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For clustering purposes,we chose six asset-related variables, 12 debt-related variables, and
seven expenditure-related variables for household balance sheets. The asset variables include
deposit savings, other savings, long-term rental deposits, residential housing, non-residential
real estate, other real assets. The debt variables include:

• Mortgage loans: Residential housing, nonresidential real estate, long-term rental deposit,
living expenses, business, refinance

• Credit loans: Residential housing, nonresidential real estate, long-term rental deposit,
living expenses, business, refinance

Expenditure variables include foodstuffs, housing, education, medical expenses, trans-
portation, communication, other consumption expenditures. Other real assets include
automobiles and valuables, and other consumption expenditures include spending on cul-
tural life, clothing, alcohol, and tobacco. All variables are winsorized for the upper and
lower 1% to handle extremely skewed distributions. In addition, they are divided by the total
consumption expenditure to mitigate scale differences between households.

For demographic analysis, householder information (age, gender, education level, and
employment status), number of household members, residential type, and location were
used.

The specifications of the models are as follows: Both the encoder and decoder of the AE
are fully connected multi-layer perceptrons (MLPs) with three hidden layers. All layers have
rectified linear unit (ReLU) activation. The encoder MLP dimensions are d-100–100-200-k,
where d is the dimensionality of the clustering variables and k is the number of clusters.
That is, it receives a d-dimensional input, which goes through three hidden layers with 100,
100, and 200 neurons, respectively, and outputs a k-dimensional output. The decoder has
an exactly opposite structure. Then, they are optimized using the Adam optimizer (Kingma
& Ba, 2014). In Appendix A, we provide more detailed parameter settings and check the
robustness of model outputs with respect to parameter choices. We confirm that our analysis
would not be affected by small changes in parameters.

3.2 Number of clusters

We varied the number of clusters k from 4 to 12 to see how households are clustered as
the number of clusters increases, and to determine the appropriate number of clusters for
a more detailed analysis. Figure 3 shows the optimal clusters of household balance sheets
obtained with different k, which is a hyperparameter that we should set before running the
model. That is, circles with black color (label 4) represent optimal clusters when we set
k � 4. Similarly, circles with light grey color (label 12) represent optimal clusters when
we set k � 12. The location of a circle represents the median of total assets and total debt
of households within each cluster, and the size of a circle indicates the average of the total
expenditure of households within each cluster. Due to large scale differences in the total asset
values of households, the asset axis is represented on a log-scale. The unit of all variables is
KRW 10,000 (≈ USD 10).

It can be seen from Fig. 3 that clusters are created along similar increasing curves of
debt with respect to log(asset). In addition, there are a couple of clusters with very small
total expenditures, while other clusters tend to have similar total spending. Hence, we would
expect that there are more dimensions to household heterogeneity than total assets, total debt,
and total expenditure. That is, we should investigate more detailed compositions of assets,
debt, and expenditure to further understand household heterogeneity.
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Fig. 3 Optimal household clusters with different number of clusters

Next,we determined themost appropriate k (number of clusters) for further analysis. There
are households that appear in multiple years of the survey (17,887 out of 26,907). If they
are assigned to different clusters in different years, it would result from either a significant
change in the household balance sheet or unstable clustering. Thus, we keep track of these
households and calculate the average of absolute changes in asset, debt, and expenditure
variables. If the changes in the variables are small, it would mean that clustering is unstable.
On the other hand, if the changes in the variables are large, it would imply that a household’s
cluster would change mostly when they had a significant change in their financial status, and
thus, clustering would be stable. While the asset, debt, and expenditure variables are all used
together for clustering, we calculated the changes in variables separately so that we may see
more detailed aspects of the clustering results.

Table 1 shows the average absolute changes in assets, debt, expenditure variables in cluster

Table 1 Variable deviations and total count of cluster label changes

Experiments (k) Average absolute difference of variables Total count

Asset Debt Expenditure

4 0.261 0.391 0.071 7,473

5 0.235 0.308 0.069 8,587

6 0.233 0.335 0.069 9,554

7 0.239 0.333 0.070 12,202

8 0.242 0.334 0.071 12,772

9 0.226 0.347 0.067 14,458

10 0.230 0.313 0.070 15,767

11 0.222 0.316 0.067 16,212

12 0.231 0.308 0.070 16,548
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changes, and total count of cluster changes. The average absolute differences indicate that
cluster changes are caused by significant changes in debt and asset variables, while the effect
of expenditure variables is relatively small. In terms of cluster numbers, note that the average
absolute change of variables naturally decreases as the number of clusters increases because
there are more clusters. For a similar reason, the total count of cluster changes tends to
increase as the number of clusters increases. In this regard, the case of k � 8 (represented
in bold) is particularly interesting because all variable changes are larger than in the case of
k � 7 while the increment of total count is marginal compared to k � 7. That is, we would
achieve relatively robust clusters when k � 8, thus, we fixed k � 8 for further analyses.

3.3 Model comparisons

Although we explained the reasons why we use a deep clustering method in Sect. 2, they
should be backed up by performance comparisons. We compare our method (deep clustering
via N2D) with four popular clustering methods, k-means, DBSCAN, hierarchical clustering
(Ward’s method), and hierarchical DBSCAN. k-means clustering would be the most well-
known clustering algorithm that tries to separate data samples into k groups by choosing
centroids that minimize the within-cluster variances. DBSCAN (Ester et al., 1996) is the
acronym of density-based spatial clustering of applications with noise, which sums up its
characteristics. It gathers points that are close to each other, while leaving out outliers.
Hierarchical clusteringmethods aim to find clusters by building a hierarchy of clusters. There
are various approaches depending on the linkage criterion that determines the dissimilarity
between clusters. We use Ward’s method, which can be seen as the hierarchical version of
the k-means method. Lastly, the hierarchical DBSCAN is a hierarchical version of DBSCAN
proposed by Schubert et al. (2017).

Clustering is a typical unsupervised learning task, and thus, the performance evaluation
of clustering algorithms is not as trivial as regression models and classification models. The
two most popular metrics are the Silhouette index and Davies-Bouldin index. The Silhouette
index, proposed by Rousseeuw (1987), measures how each data point is similar to its own
cluster compared to other clusters. The Davies-Bouldin index (Davies & Bouldin, 1979)
represents the average similarity between each cluster and its closest cluster. Hence, good
clusters would have a high Silhouette index but a low Davies-Bouldin index.

Table 2 summarizes the clustering performances of different methods. For each method,
the number of clusters k is chosen to maximize the Silhouette index and minimize the
Davies-Bouldin index. It is clear that the deep clustering method shows the best performance
compared to other popular clustering methods in terms of two indexes in our dataset.

Table 2 Clustering performance comparison

k-means DBSCAN Hierarchical
clustering

Hierarchical
DBSCAN

Deep
clustering

(k � 10) (k � 13) (k � 7) (k � 7) (k � 8)

Silhouette (↑) 0.317 0.065 0.292 0.154 0.381

Davies-Bouldin
index (↓)

1.418 1.278 1.515 1.553 0.816
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4 Analysis of household heterogeneity via deep clustering

In this section, we find representative clusters of household balance sheets via deep clustering
and analyze them. The optimal clusters are analyzed in detail in terms of financial (Sect. 4.1)
and demographic (Sect. 4.2) perspectives. The inter-cluster mobility is discussed in Sect. 4.3.
Finally, we present an out-of-sample analysis in Sect. 4.4.

4.1 Household heterogeneity in balance sheets

As we have seen from Fig. 1, the relationship between asset allocation and wealth level
is highly nonlinear, and dividing households in terms of wealth level was not helpful in
simplifying the relationship. We present the same results for all five income quintiles, four
age groups (under 40, 40 to 50, 50 to 60, above 60), and 20 income-age groups in Appendix
B.While households are often classified in terms of their income or age, these results indicate
that such groups do not do much to reduce within-group heterogeneity.

Figure 4 represents the average portfolio weights with respect to wealth level of differ-
ent household clusters found by the deep clustering method. We can clearly see that the
relationship has become much simpler. In particular, asset allocations seem almost constant
within Clusters 1 to 4. This showswhat deep learning can do in analyzing complex household
finance data. Deep learning has been exceptional in capturing nonlinear dependencies within
data. Hence, it was able to group households accounting for complex relationships, and thus,
groups have much higher within-group homogeneity.

We now investigate the financial heterogeneity of households in more detail. Table 3
summarizes the financial variables of eight clusters with units of KRW 10,000 (≈USD 10).4

Clusters are sorted with respect to the average total asset value in descending order. Hence,
Cluster 1 was the wealthiest group and Cluster 8 was the poorest group. The numbers in
parentheses are proportions of each variablewithin the asset, debt, and expenditure categories.
Values with relatively large proportions compared to other clusters are highlighted in bold.

For assets shown in Panel A of Table 3, there is a clear tendency that the wealthy-half
(Clusters 1, 2, 3, 4) hold more than 50% of their assets in real estate (residential and non-
residential), while non-wealthy-half (Clusters 5, 6, 7, 8) hold more than 50% of their assets
in financial assets (deposit savings, other savings, long-term rental deposits). Among the
wealthy-half, thewealthiest two (Clusters 1 and 2) have a significant amount of nonresidential
real estate, but the other two (Clusters 3 and 4) do not. As for the non-wealthy-half, Cluster 5
has more than 60% of their assets in long-term rental deposits, whereas Clusters 6 and 7 are
more concentrated in savings and other real assets. Cluster 8 seems to be the poorest group
with a very small amount of assets. Overall, the major asset classes of different household
groups are summarized in Fig. 5.

It is widely known that Korean household wealth is excessively concentrated in real estate
compared to other developed countries (Fredriksen, 2012; Park, 2020). However, our analysis
reveals that this statement is true only for the wealthy-half groups. This shows the importance
of analyzing heterogeneous household groups, because aggregated values would be naturally
biased towards wealthy groups that possess large amounts of assets.

A similar tendency can be found for the debt variables (Panel B of Table 3). More than
30% of loans in Clusters 1 and 2 are for nonresidential real estate, and more than 60%
of loans in Clusters 3 and 4 are for residential housing. Approximately 70% of the loans
for Cluster 5 are for long-term rental deposits, and more than 70% of loans in Clusters 7

4 More detailed statistics of household balance sheets of different clusters are given in Appendix C.
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Fig. 4 Average portfolio weights of different household clusters

and 8 are for living expenses, business funds, and refinances. Hence, the purpose of loans
changes from urgent financial liquidity to purchasing real estate as the household wealth
level increases. In addition, more than 70% of the loans in Clusters 1 to 5 are mortgage loans,
but the other clusters have more credit loans. Clusters 7 and 8 rarely have mortgage loans
(≤ 10%), probably due to a lack of underlying assets. Figure 6 summarizes the findings.

Panel C of Table 3 shows the expenditure variables for different household clusters. While
the overall proportions are not as heterogeneous as in the asset and debt variables, a few
interesting observations can be found. First, the poorest two clusters (7 and8) spent a relatively
large amount on housing (≥ 20%) compared to the others. Second, Clusters 2 to 5 tended
to invest more on education (≥ 10%). Third, more than 10% of the expenditure of the
poorest group (Cluster 8) is for medical purposes. Fourth, wealthy groups (Clusters 1 to 5)
tend to spend slightly more (around 25%) for cultural life, clothing, alcohol, tobacco, etc.
(categorized as ‘others’).

A rough decision tree is shown in Fig. 7 to summarize the multidimensional heterogeneity
of householdfinance.Wecan see that asset anddebt variables aremore crucial for representing
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Fig. 5 Major asset class of households with different level of wealth

Fig. 6 Major loan types of households with different level of wealth‘

Fig. 7 Decision tree for household clusters
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the heterogeneity of households than expenditure variables. For more detailed classifications,
asset compositions (especially real estate) are important for wealthy groups, whereas the
purpose and type of debt are important for non-wealthy groups.

4.1.1 Clustering quality and variable importance

Here we further check the quality of the clustering results and the importance of each vari-
able by investigating how variables are distributed within and between groups. Recall that
the objective of clustering is to find clusters with high within-cluster similarities and low
between-cluster similarities. We believe that the Gini coefficient and its decomposition can
be useful in this regard. The Gini coefficient is a popular measure of inequality in the dis-
tribution of income or wealth, and some researchers have decomposed the Gini coefficient
to investigate the causes of disparity in income distributions with different populations and
educational backgrounds (Deaton & Paxson, 1994, 1997). There are two popular approaches
to decomposition: Pyatt (1976) and Shorrocks (1982). While the former directly compares
the Gini coefficients of different groups, the latter linearly decomposes the Gini coefficient
into within-group, between-group, and overlapping inequalities. We use the latter approach
because it quantifies within-group and between-group inequalities that are exactly in line
with the clustering objective.

Let us consider k groups (or clusters) and a variable Y. YI represents the variable within
group i with mean μI and cumulative distribution Fi(Yi). Then, the overall population Yu �
Y1 ∪ Y2 . . . ∪ Yk is the union of all groups with Fu(Yu) � ∑

ipiFi(Yi), where pI is the
population share of group i, with mean μu. The Gini coefficient of the overall population is
defined as.

G � 2cov(Yu,Fu(Yu))

μu
,

and Mookherjee and Shorrocks (1982) decomposed it into

G � GW + GB + GO.

Here, within-group inequality GW is defined as GW � ∑
ipiqiGi, where qi is the variable

share of group i, Gi � 2cov(Yi,Fi(Yi))
μi

is the Gini coefficient within group i. Between-group

inequality GB is defined as GB � ∑
i
∑

j
pipj|μi−μj|

2μu
, and overlapping inequality GO is the

remainder.
We calculated within-group inequality (GW), between-group inequality (GB), and over-

lapping inequality (GO) for all cluster variables, and the proportions of the three inequalities
are shown in Fig. 8. Three important observations were made. First, we can see that all
within-group inequalities are less than 20% and are mostly much less than between group
inequalities. This indicates that the quality of clustering is good because all variables tend
to have high within-group similarities and low between-group similarities. Second, there are
some variables in which between-group inequality accounts for more than 60% of the Gini
index. For example, long-term rental deposits, residential housing, nonresidential real estate,
mortgage loans for nonresidential housing, long-term rental deposits, business funds, and
credit loans for long-term rental deposits. All these variables were shown to be very impor-
tant in interpreting the clustering results. Third, all expenditure variables exhibited more
than 60% of the overlapping inequalities. That is, these variables do not contribute much to
clustering, which is consistent with our previous discussion.
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Fig. 8 Decomposition of Gini coefficients into between-group, within-group, and overlapping inequalities

Table 4 List of independent variables for logistic regression

Independent variable Description

Area of residence Living in Seoul metropolitan area or not

Gender of householder Male or not

Number of family members (Numbers are directly used for regression)

Education level of householder Under middle school, high school, or higher education

Home ownership None (includes monthly rental or free company housing), long-term
rental, or homeowner

Age of householder Under 39, 40 ~ 49, 50 ~ 59, or upper 60

Income level Low-income (1st and 2nd income quintiles), mid-income (3rd income
quintile), or high-income (4th and 5th income quintiles)

Employment status Employed or not (includes freelancers or helping family business)

4.2 Sociodemographic characteristics of clusters

Although optimal clusters are found only with respect to a financial perspective, there is no
doubt that household finance is closely related to sociodemographics, such as householder’s
age, education level, and so on. Therefore, we conducted logistic regressions for all clusters
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to investigate their sociodemographic characteristics. Consider a logistic regression for a
cluster. The dependent variable yi is defined to represent whether a household is in a cluster.
The independent variables are presented in Table 4. (Detailed statistics with the percentage
see Appendix A.1.)

Table 5 summarizes the results of logistic regressions. Regression coefficients with statis-
tical significance and corresponding odd ratios are shown. Notable variables are highlighted
with shadows: positive (italic) and negative (bold) relationships. We can see that most vari-
ables are statistically significant, while having both positive and negative values. It shows
a strong relationship between the multidimensional heterogeneity of household finance and
sociodemographics.

Clusters 1 and 2, the wealthiest two groups, were shown to consist of older households
compared to others. They both tend to have a highly educated male householder, living in
their own houses, and have a high income. While Cluster 2 households live outside the Seoul
metropolitan area and are employed, Cluster 1 households live in or near Seoul and have a
small number of family members with mixed employment status. Cluster 2 was also more
likely to have more family members.

Cluster 3 is quite unique in that it is one of the wealthiest groups with their own houses
in metropolitan areas, but its households are likely to be unemployed (including freelance
or helping family business) and have low income. They can also be characterized as highly
educated young households. Perhaps this peculiar cluster represents young households who
inherited houses early.

Clusters 4 and 5 can be regarded as twomiddle-class groups. Cluster 4 can be characterized
as living outside metropolitan areas, large families, homeowners, and low education, while
Cluster 5 can be characterized as living inmetropolitan areas, small families, long-term rental
housing, high education, and high income. These reflect typical rural–urban differences in
family size (Key, 1961), income (Lipton, 1977), education (van Maarseveen, 2020), and
housing affordability (Lee & Jun, 2018).

Clusters 6 and 7both consist of poor householdswho are relatively young, under temporary
housing (mostly monthly rent), with no higher education. However, the former is likely to
be employed, whereas the latter is not.

Cluster 8 clearly represents the most vulnerable households with very small families
(high probability of being alone), low education, low income, low education, unemployed,
and under temporary housing, regardless of their age. This cluster had the smallest number
of constituents.

Let us summarize the findings with respect to variables.

Age Old clusters are likely to be wealthy, which is natural in a sense that households
would accumulate wealth during working ages. However, there were also two
strong exceptions (Clusters 3 and 8)

Education The three most wealthy clusters are highly educated while the three most poor
clusters are poorly educated. For the two middle class groups, one in
metropolitan area (Cluster 5) is highly educated and the other outside
metropolitan area (Cluster 4) is poorly educated. Also, Cluster 3 is highly
educated but has low income

Income The two most wealthy clusters have high income, and the three most poor clusters
have low income. However, three clusters in the middle exhibit mixed results
(especially Cluster 3)
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Fig. 9 Transition matrix between household clusters

Number of
family members

While there is no clear linear relationship between family size and wealth, it is
interesting to note that the wealthiest and the poorest clusters are highly likely to
consist of small families

Area of residence No overall trend is found, but typical rural–urban differences can be seen between
the two middle class groups (Clusters 4 and 5)

Previous studies have focused on finding a linear relationship between two variables. For
example, researchers have reported the existence of a linear relationship between income
and wealth (Lee et al., 2020), between education and wealth (Brückner & Gradstein, 2013;
Boshara et al., 2015), and the absence of a linear relationship between income and wealth
(Mueller, Buchholz, & Blossfeld, 2011). However, our results show that even if there is an
overall trend between two variables, there is always a strong exception, making the rela-
tionship non-linear. Hence, considering multiple variables is crucial for understanding the
complex relationship between financial and sociodemographic variables.

4.3 Mobility between clusters

We analyze the mobility between clusters by tracking the cluster movements of households
who participated in the survey multiple times. From 2017 to 2020, clusters of 12,272 house-
holds out of 52,920 total respondent households changed. Figure 9 shows the transitionmatrix
of the clusters. The number in cell (i, j) represents the probability of a household moving
from cluster i to cluster j in the next survey.

Someblock-diagonal shapes can be observed. Two large blocks can be seenwithinClusters
1, 2, 3, 4 and within Clusters 5, 6, 7, 8. That is, not many households move from the wealthy
groups to the non-wealthy groups and vice versa, which indicates that there are two separate
classes that are not reachable to each other in a few years of term. It is interesting to note that
Clusters 1, 2, 3, 4 mostly own their houses and Clusters 5, 6, 7, 8 do not.
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In addition, there are small blocks between most adjacent clusters (e.g., between clusters
1–2, 3–4, 5–6, 6–7, 7–8). However, we can find another weak link between Clusters 2 and 3.
Recall that the key difference between the two clusters was that Cluster 2 had a substantial
amount of nonresidential real estate, but Cluster 3 had almost none. Therefore, real estate is
not only a crucial factor for classifying households, but also a huge hurdle for households
who wish to climb up the class ladder.

4.4 Out-of-sample analysis after COVID-19

Lastly, we show the out-of-sample results using the survey data in 2021, which is mostly
based on financial activities of households in 2020. Hence, it will allow us to see the changes
after COVID-19 pandemic.

Figure 10 represents the variable importance weights of between-group inequalities of
Gini coefficients of asset and debt (mortgage and credit loans) variables. We can see from the
figure that after COVID-19, between-group inequalities are decreased in asset variables, but
they are increased in debt variables. This means that the changes in debt after COVID-19 are
quite different for different clusters, while changes in assets would not. Hence, we can see
that the impact of COVID-19 was quite asymmetric for household debt, but it was relatively
even for household assets. This makes sense because COVID-19 caused immediate damage
to the income of households who have their own business (e.g., restaurants or coffee shops),
and many of them had to obtain additional loans.

Fig. 10 Variable importance weights of between-group inequalities of Gini coefficients in different years
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Fig. 11 Transition matrix between household clusters before (left) and after (right) COVID-19

Next, we investigate the change in mobility between clusters. Figure 11 compares the
transition matrix before and after COVID-19. It is clear that the mobility is increased after
COVID-19, because every diagonal term became smaller (i.e., probabilities of staying in the
same cluster are reduced).

Average probability of moving into a poorer cluster

Average probability of moving into awealthier cluster

However, if we look into the above ratio5 for the transition matrix, there is a significant
difference between the wealthy half (Clusters 1,2,3,4) and the non-wealthy half (Clusters
5,6,7,8). Before COVID-19, the average of the above ratio for the transition matrix for the
wealthy half and the non-wealthy half was 0.621 and 0.653, respectively. After COVID-19,
however, they become 0.639 and 1.151.While the direction of clustermobility for thewealthy
half was not affected by COVID-19, it is clear that the probability of the non-wealthy half
going into poorer clusters became much higher. Hence, we can see that COVID-19 had a
much greater adverse impact for the non-wealthy half than the wealthy half.

5 Conclusion

This study has shown how advanced clustering techniques, especially that involve deep learn-
ing models, can be useful for understanding the complex heterogeneity of household finance.
By utilizing a deep learning-based clustering N2D framework proposed byMcConville et al.
(2021), we were able to efficiently handle high-dimensional data to find representative clus-
ters. More specifically, we could capture and decompose the nonlinear relationships in data
through deep clustering, whereas conventional age or income groups could not.

The key implication of this study is that various variables should be considered together
to analyze household heterogeneity. For example, real estate ownership was shown to be
critical for the broad classification of wealthy and non-wealthy Korean households. Within
the wealthy group, nonresidential real estate was shown to be the next key factor, while credit
loans were found to be important explanatory variables for further classifications within the
non-wealthy group. We used the Gini coefficients and their decompositions to further verify

5 For the wealthy half (Clusters 1,2,3,4) before COVID-19, the numerator would be the average of the values
on the right side of the first four diagonal values (0.18 + 0.13 + 0.07 + … + 0.04 + 0.07 + 0.05 + 0.02) / 22
� 0.0673. On the other hand, the denominator would be the average of the values on the left side of the first
four diagonal values (0.10 + 0.08 + 0.12 + 0.05 + 0.15 + 0.15) / 6 � 0.1083. Hence, the ratio becomes 0.0673
/ 0.108 � 0.621. The other ratios can be calculated similarly.
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the quality of clustering and the relative importance of the variables. In addition, the multidi-
mensional heterogeneity of households was shown to be closely related to sociodemographic
variables, and the relationships were non-linear.

Since this study was conducted based on Korean household data, detailed findings should
be interpreted carefully and might not be directly applicable to households in different
countries. Hopefully, however, our study will encourage other researchers to search for
more multidimensional aspects of household heterogeneity. Such findings are crucial for
developing more accurate macroeconomic models with heterogeneous agents and deriving
appropriate economic policies.

Acknowledgements This work was supported by the National Research Foundation of Korea (NRF) grant
funded by the Korea government (MSIT) (No. NRF-2019R1C1C1010456). Fabozzi was funded by EDHEC
Business School for the 2020-2021 academic year.

Appendix A: Hyperparameters for deep clustering

For autoencoder, we used a three-layer fully connected networks with rectified linear units
(ReLU). While there are many different network architectures and activation functions, we
have chosen one of the simplest forms to mitigate the architecture specific results. Note that
ReLU is known to be more appropriate for sparse data compared to the sigmoid function
(Glorot et al., 2011), and households’ debt data are very sparse since there are many house-
holds who do not have any or some type of loan. In addition, we set the dropout rate as 0.05
for all layers for the robustness of the model.

Table 6 shows the range of hyperparameters we used to train deep clustering algorithm
(autoencoder andUMAP). To find the optimal parameters, we used a random search approach
(Bergstra & Bengio, 2012) by randomly sampling 200 models within the range. Note that the
number of all combination is 4 × 4 × 4 × 3 × 2 � 384, and thus, the random search covers
more than 50%.

Wehave chosen the bestmodel configuration among200 randomly sampledmodel settings
with respect to the Silhouette index and Davis-Bouldin index. Here, we show that our results
are not restricted to this particular choice. In Fig. 12, we compare the box plot of Euclidean
distance from the cluster centers of the best model for top 20 model configurations and the
whole 200 random samples. To bemore specific, we ordered clusters in terms of their average
wealth for each model setting. Then, for a model configuration, we would have clusters 1 to
8. Next, we calculated the distance between the cluster i in each model configuration and
the cluster i in the best model configuration, and we took the summation for all i . In the
figure, it is clear that the top 20 models have cluster centers that are very much close to the
cluster centers from the best model. Hence, it means that the results shown in Sect. 4 would

Table 6 Hyperparameter search
range Hyperparameter Range

Batch size [16, 24, 32, 64]

Learning rate [0.0001, 0.001, 0.001, 0.01]

Epochs [20, 50, 75, 100]

# of nodes in each layer [10–1000, 10–1000, 10–1000]

α, β(UMAP) [0.9 ~ 1, 0.5–1.0]
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Fig. 12 Euclidian distance between the models

not change much even if we choose another model configuration within the top 20 model
configurations with respect to the Silhouette index and Davies-Bouldin index.

Appendix B. Average portfolio weights of different income and age
groups

See Figs. 13, 14, and 15.
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Fig. 13 Average portfolio weights of different income quintiles
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Fig. 14 Average portfolio weights of different age groups
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Fig. 15 Average portfolio weights of different income and age groups

Appendix C. Summary statistics of household balance sheet of clusters

See Table 7.
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Abstract 

 

Time series forecasting is an important area of financial forecasting. With advances in machine learning 

and AI, the speed of information drives market efficiency. A robust financial model assumes an efficient 

market in which all currently available information is factored into prices, and future prices are 

determined by uncertainty. Today's portfolio theory is based on the Markowitz framework, which 

focuses on market uncertainty analysis rather than price prediction. The Markowitz framework makes 

strong assumptions about the probability distribution of future returns. To overcome this drawback, we 

propose a generative adversarial network method using a quantum computer (QuGAN) for portfolio 

optimization. Generative models in QuGAN learn the probability distribution of asset prices to match 

the probability distribution in the real market. After training the model, we construct an optimal 

portfolio that minimizes risk and maximizes profit observed under various simulations. This study 

compares the portfolio through the QuGAN methodology and the classic Markowitz portfolio. 
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1. Introduction 

 

Financial markets play a significantly important role in the modern economy. The financial market is 

where systematic financial transactions are made between the source of funds and the demand for funds. 

A product called a financial asset or financial instrument is required for a financial transaction. The 

investment industry has undergone significant changes in recent years due to machine learning and AI 

(Jaeger et al., 2020). However, financial portfolio management today is mainly based on linear models 

and the Markowitz framework known as Modern Portfolio Theory (MPT) (Markowitz, 1959). Despite 

its importance, the MPT is criticized for making idealistic assumptions about financial markets. MPT 

is determined as an estimate of future returns and volatility for each asset and its correlation. However, 

market price forecasting remains one of the significant challenges in the time series literature due to its 

noisy character (Tsay, 2005). 

 Data in financial markets are volatile and change rapidly over time. Traders need to make 

decisions in real time amid quickly changing information. This real-time information creates an efficient 

market. Current trading prices reflect all information and future data available to market participants. 

When meaningful long-term predictions are made in efficient markets, these predictions are already 

reflected in the short-term markets traders are trading (Timmermann & Granger, 2004). In other words, 

future forecasts affect current prices, and future prices again become uncertain. 

Developing financial transactions and institutions increases market efficiency while making 

market prices challenging to predict. Recently, as convolutional neural networks (CNN) are gradually 

developed, research in various directions has been proposed (Krizhevsky et al., 2017). Among them, 

research on generative models has been actively conducted, and Goodfellow et al. (2014) first proposed 

a Generative Adversarial Networks (GAN) model in which generators and discriminators compete with 

each other for learning. Afterward, the generative model using these outputs a clear result similar to the 

actual photo and can create a new sample similar to the learning data by itself through the distribution 

of the learning data, so it is widely used in young fields and shows excellent performance. 

In addition, various studies are being conducted to apply quantum computers to machine 

learning. One of them is a GAN using a quantum computer. Quantum generative adversarial networks 

(QuGAN) use the interaction of generators and discriminators to map an approximate representation of 

the probability distribution underlying a given data sample onto a quantum channel (Assouel et al., 

2022). The generator and discriminator are trained in alternating optimization steps. The generator aims 

to generate samples that the discriminator will classify as training data samples (i.e., samples drawn 

from the actual training distribution), and the discriminator attempts to discriminate the original training. 

The generator's data sample and the data sample (i.e., distinguishes between real and generated 

distributions). The final goal is for the quantum generator to learn a representation of the underlying 

probability distribution of the training data. Thus, a trained quantum generator can load quantum states 



that are approximate models of the target distribution. 

This study presents pioneering research on building optimized portfolios using QuGAN. Our 

models use historical price data to predict future price trends related to non-linear interactions between 

different assets. We propose a methodology for constructing an arbitrary portfolio utilizing the 

distribution of accurate market data learned through QuGAN training. We specify the best portfolio 

diversification that minimizes the observed risk and maximizes the expected return. The main 

contributions of this paper are as follows. 

First, unlike existing work and practice, this paper automatically learns non-linear market 

behavior and non-linear dependencies between different financial assets by modeling market 

uncertainty conditioned on the most recent past and generating many realistic future trends from the 

current situation. Second, to solve the portfolio diversification problem, we propose a real-time series 

generation model called QuGAN and an optimization methodology using the QuGAN model. The 

probability distribution learned by QuGAN allows you to use different options to offset the risk on your 

return. Third, experiments on real data sets show that the proposed approach can realize the risk-return 

tradeoff and far outperforms conventional MPT. 

The rest of the paper is structured as follows. After introducing MPT in Section 2, we briefly 

review related work in Section 3. We present the QuGAN methodology proposed in Section 4. This 

includes market uncertainty modeling, generative network architecture, and an optimization approach 

for portfolio diversification decisions. Section 5 presents some experimental results demonstrating the 

effectiveness of QuGAN on real-world financial assets and data. Finally, Section 6 concludes the thesis. 

 

2. Portfolio optimization with Markowitz’s framework 

 

Modern Portfolio Theory (MPT) is a practical method for selecting investments to maximize overall 

return within an acceptable level of risk. This mathematical framework is used to construct an 

investment portfolio that maximizes the expected return for a given level of risk (Markowitz, 1959). 

MPT is a method that investors can use to construct diversified portfolios that maximize 

returns without unacceptable levels of risk. A key component of MPT theory is diversification. 

Markowitz argued that investors would achieve the best results by evaluating their tolerance for risk 

and choosing the optimal combination of the two. 

Let vector 𝑊 = {𝑤1, 𝑤2, ⋯ , 𝑤𝑛} with n-assets) be the strategy for an investment portfolio 

consisting of financial assets, where 𝑤𝑖is the amount of capital invested in the 𝑖-th asset. We assume 

the distribution of future asset returns and optimize 𝑊 to maximize the expected portfolio's return and 

minimize its risk. According to Markowitz, the prediction of the probability distribution of asset return 

𝑟rate following assumptions: 

 



𝑟 ∼  𝑁 (µ, 𝛴) where 𝑟 is the return vector (𝑟𝑖 is the return on asset 𝑖) 

µ is the expected average return vector,  

𝛴 is the covariance matrix.  

 

The expected mean returns 𝜇  and the return covariance matrix 𝛴  is estimated from past 

observations and is assumed to be constant in the future. Given a portfolio strategy 𝑊, the portfolio 

future return 𝑟𝑝(𝑊) is determined by a linear combination of individual asset returns. 

 

𝑟𝑝(𝑊)~𝑁 (𝜇𝑝(𝑊), 𝜎𝑝
2(𝑊)) 

𝜇𝑝(𝑊) = ∑ 𝑤𝑖

𝑖

𝜇𝑖  

𝜎𝑝
2(𝑊) = ∑ ∑ Σ𝑖,𝑗𝑤𝑖𝑤𝑗  

𝑗𝑖

 

(1) 

 

where ∑ 𝑤𝑖𝑖 = 1 . 

We aim to find 𝑊 that minimizes the portfolio risk factor σ and maximizes the expected value 

µ𝑝 . This optimization problem can be solved in closed form. Generally, the efficient frontier is 

represented by a solid line in the risk-return space in Figure 1. We use the covariance matrix 𝛴 to reach 

the efficient frontier and minimize the risk. That is, assets with a small correlation coefficient with other 

assets should be included. The Markowitz Framework is a mathematically robust model. However, the 

home has some drawbacks. First, returns on individual assets are not normally distributed. Second, 

interactions between different assets can be non-linear, but the covariance 𝛴  only captures linear 

dependencies. Third, future probability distributions of asset returns may differ from past ones. 

 

Insert <Figure 1> here 

 

In this study, we try to solve this problem by using Quantum GAN, a generative model using 

quantum computers. QuGAN implicitly reflects non-linear interactions between different assets without 

assuming a probability distribution for the rate of return of development assets. QuGAN also explicitly 

models the trained current market conditions and future probability distributions of returns. 

 

3. Literature Review 

 

3.1 Portfolio Optimization 

 



MPT is an investment theory that seeks to maximize the expected return of a portfolio for a given 

amount of portfolio risk or minimize the risk for a given level of expected return by selecting a ratio of 

different assets. Although MPT is widely used in practice in the financial industry, in recent years, the 

underlying assumptions of MPT have been extensively challenged. 

MPT is an important advance in the mathematical modeling of finance. MPT, also known as 

portfolio management theory, is a sophisticated investment decision approach that helps investors 

classify, estimate, and control the type and amount of expected risk and return. Portfolio theory departs 

from traditional security analysis in that it shifts the emphasis from analyzing the characteristics of 

individual investments to determining the statistical relationship between the individual securities that 

make up the overall portfolio (Elton & Gruber, 1997). The theory at the heart of portfolios quantifies 

the relationship between risk and return and posits that investors should be rewarded for taking the risk. 

This theory encourages asset diversification to hedge against market risk and risks inherent to a 

particular company. 

MPT mathematically formulates investment diversification, selecting a collection of 

investment assets that collectively have lower risk than individual assets. This possibility is intuitive to 

see, as different types of assets often change in value in opposite directions. However, diversification 

lowers risk even when asset returns are positive, not negatively correlated. More technically, the MPT 

model’s asset returns as a conventionally distributed function (or, more generally, an elliptic distributed 

random variable), defines risk as the standard deviation of returns, and models a portfolio as a weighted 

combination of assets. A portfolio is a weighted combination of returns on assets. MPT seeks to reduce 

the total variance of portfolio returns by combining multiple assets whose returns are not positively 

correlated. MPT also assumes investors are rational and markets are efficient. 

The idea behind MPT is that assets in an investment portfolio should not be individually 

selected on merit. Instead, it's important to consider how each asset's price changes and all other assets 

in the portfolio change. An investment is a balance between risk and expected return. For a given risk, 

MPT describes selecting the portfolio with the highest expected return. Or, for a given expected return 

rate, MPT describes setting a portfolio with the lowest potential risk. Generally, assets with higher 

expected returns are riskier (Taleb, 2007). 

To overcome the limitations of MPT, a conditional volatility model that can change the 

volatility of returns over time has been studied. These sophisticated statistical models assume that 

changing relationships between assets will eventually return to normal. Therefore, long-term changes 

in returns or correlations fail. 

With machine learning advances, investors and researchers are researching to apply machine 

learning to finance. However, most research focuses on trading strategies using reinforcement learning. 

These trading strategies focus on decision-making and allow portfolio diversification. Reinforcement 

learning buys additional assets with increased target weights and sells assets with decreased target 



weights. Reinforcement learning assumes an ideal market where all trades are instant and does not affect 

the market. However, there are thousands of traders trading simultaneously in the market, and complex 

factors affect the market, given the complexities of financial markets, machine learning, and portfolio 

management. 

The QuGAN algorithm assumes a single agent and an ideal trading environment in this work. 

Each trade is executed instantly and does not affect the market. Indeed, the trading environment is 

essentially a multiplayer game with thousands of agents acting simultaneously and influencing the 

market in complex ways. Combining machine learning with portfolio management still needs to be 

explored, given the complexities of financial markets. 

 

3.2 QuGAN 

 

Machine learning is being used across society today, from image and voice recognition to traffic 

prediction, product recommendation, medical diagnosis, stock market trading, and fraud detection. 

Deep neural networks, a specific machine learning tool, have made significant progress over the past 

few years. However, despite this progress, such machine learning needs more data sizes. An experiment 

in the laboratory can be run many times, whereas a time series of stock prices only occurs once in 

finance. To compensate for this, attention was paid to reproducing existing data with high accuracy. 

One of them is a generative adversarial network (GAN). It is an unsupervised learning device 

in which two neural networks, a generator, and a discriminator, compete to generate information similar 

to a given data set in the minimax game (Goodfellow et al., 2014). They have been utilized over the 

past few years in the fields of image generation (Schawinski et al., 2017; Yu et al., 2018), medicine 

(Anand & Huang, 2018; Zhavoronkov et al., 2019), and quantitative finance (Ruf & Wang, 2020).  

A preliminary study exploits the exponential advantages of quantum computing, 

demonstrating the quality of this approach, especially for high-dimensional data (Huang et al., 2021). 

Ling et al. (2019) presented experimental proof-of-principle demonstrations of QuGAN in 

superconducting quantum circuits, Stein et al. (2021) use quantum fidelity measures to propose loss 

functions acting on quantum states.  

Real quantum computers are not yet available, but the Noisy Intermediate-Scale Quantum 

(NISQ) algorithm already exists and can perform quantum-like tasks (Bharti et al. 2021). Indeed, 

recently Quantitative Finance has placed a great emphasis on data-driven models (using deep learning 

and reinforcement learning), and the need for large amounts of data for training purposes has increased. 

Thus, generative models (Kondratyev and Schwarz 2019) are key in helping generate realistic data that 

can be used for training. 

 

4. Portfolio optimization with QuGAN 



 

4.1 Overview QuGAN 

 

GAN allows the processing potentially complex financial services data so that the distribution does not 

need to be explicitly specified. GAN will implicitly maximize the likelihood of complex distributions, 

allowing us to generate samples from such distributions. The key here is an implicit maximum 

likelihood estimation principle that does not specify which complex distributions are parameterized. 

This study deals with time series data on stock prices. Bai et al. (2018) show that one-

dimensional convolutional networks are effective for processing time series and outperforming 

conventional recurrent networks regarding result quality and performance. In our study, we process the 

time series and represent it as a matrix 𝑀 with the number of assets 𝑘 columns and 𝑚 rows (dates), 

𝑀 ∈ 𝑅𝑚×𝑘. 

So 𝑀 consists of two parts. 𝑀𝑏 is the known part with length b and the past stock price. 𝑀𝑓 

is the unknown part with length 𝑓 and the future stock price. A generative deep neural network 𝐺 is 

applied to learn the probability distribution of a target future price 𝑀𝑓 given a prior distribution of 

known recent past 𝑀𝑏. Figure 2 shows t graphical interpretation of the inputs and outputs of generator 

𝐺. A generative model returns a synthesizable future matrix 𝑀𝑓 by simulation. 

 

𝑀𝑓 =  G(𝑀𝑏) (2) 

 

The known past 𝑀𝑏 is used to adjust the probability distribution of the future 𝑀𝑓 based on 

the most updated market conditions. Generator 𝐺  is a generative network in which 𝑀𝑓  learns its 

weights such that the past 𝑀𝑏 matches the probability distribution of given 𝑀𝑓 in the training data 

set. Generator 𝐺  is trained in adversarial mode against discriminator 𝐷  to minimize the entropy 

between synthetic data 𝑀𝑓 and real data 𝑀𝑏 based on historical observations. 

 

Insert <Figure 2> here 

 

To implement the adversarial training process, we consider a discriminant network 𝐷 that 

connects the full price matrix 𝑀, namely the condition 𝑀𝑏, and the synthetic data 𝑀𝑓 or the real data 

𝑀𝑓. The discriminator output is the threshold 𝑐 = 𝐷(𝑀). The discriminator is trained to minimize 𝑐 

for real data and maximize 𝑐 for synthetic data, whereas Generator 𝐺's training goal is to minimize 𝑐 

for synthetic data. 

QuGAN is a quantum algorithm used for generative modeling. The algorithm uses the 

interaction of quantum generators. That is, learn the underlying probability distribution given ansatz 



and classical discriminators, neural networks, and training data. 

QuGAN distinguishes between real and generated distributions. Like GAN, generators and 

discriminators of QuGAN are trained in alternating optimization steps. The generator aims to generate 

samples that the discriminator will classify as training data samples, and the discriminator is the initial 

training to try to differentiate. The end goal is for the quantum generator to learn a representation of the 

underlying probability distribution of the training data. Thus, a trained quantum generator can load 

quantum states that are approximate models of the target distribution. 

 

4.2 QuGAN architecture 

 

Normalize the return at closing price 𝑝, adjusted over the training period. We use a revised closing 

price p for each financial asset. Generally, [0,1]  is used primarily for regularization in machine 

learning. However, in this study, it is normalized to [−1,1] to distinguish the rise and fall of the stock 

price easily. This normalization allows limited values to be learned to a reasonable level. However, in 

this case, data for outliers is also normalized, so in actual learning, data for the top 5% and bottom 5% 

are excluded and normalized. 

 

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑟 =  (
2

𝑟𝑚𝑎𝑥 − 𝑟𝑚𝑖𝑛
) (𝑟 − 𝑟𝑚𝑖𝑛) − 1 (3) 

 

where, 𝑟𝑚𝑎𝑥 and 𝑟𝑚𝑖𝑛 mean the maximum and minimum values of the rate of return for a given asset, 

respectively. 

 Given stock data, we use QuGAN to learn the underlying random distribution of the data and 

directly load it into a quantum state. 

 

|𝑔𝑡𝑟𝑎𝑖𝑛𝑒𝑑⟩ = ∑ √𝑝𝑗|𝑟𝑗⟩

2𝑛−1

𝑗=1

 (4) 

where √𝑝𝑗 is the probability amplitude of the |𝑟𝑗⟩. In other words, the probability of getting state |𝑟𝑗⟩ 

is a 𝑝𝑗 . The main goal of QuGAN is to generate a probability distribution close to the underlying 

distribution of training data 𝑀 (Zoufal et al., 2019). 

As with other quantum algorithms, samples must be mapped to discrete values. The number 

of values that can be expressed is determined by the number of qubits used. Therefore, the density of 

data is defined as the number of qubits. The n-qubits can represent 2𝑛 discrete data. 

When the learning process is complete, the generator 𝐺 can synthesize a realistic future price 

𝑀𝑓  =  𝐺(𝑀𝑏). We use these synthetic simulations to numerically estimate the expected risk and return 



for different portfolio diversification strategy 𝑤 . Therefore, we run portfolio optimization on the 

estimated posterior probability distribution. 

For a given conditioning 𝑀𝑏, let us consider a set S of n simulations 𝑀𝑓 ∈ S sampled at 

𝑃(𝑀𝑓 |𝑀𝑏) by evaluating the generative model 𝐺(𝑀𝑏). Portfolio return achieved with diversification 

𝑤 for a given the simulation 𝑀𝑓 is: 

 

𝑟𝑝(𝑤, 𝑀𝑓 ) =  ∑ 𝑥𝑖 𝑟𝑖(𝑀𝑓) 

𝑖

 (5) 

 

A simulation 𝑀𝑓 ∈  𝑆 sampled from the probability distribution 𝑃(𝑀𝑓 |𝑀𝑏) is used to infer 

the probability. The portfolio optimization problem is defined as in the traditional Markowitz's 

optimization approach (Section II), but runs on the predicted future probability distribution, which is 

nonnormal and contains nonlinearities. Interactions between different assets. For example, the 

optimization goal is to identify the configuration of x that maximizes the expected return µ𝑝 =

 𝐸(𝑟𝑝(𝑤, 𝑀𝑓 )| 𝑤, 𝑀𝑏)  and minimizes the risk function 𝜎(𝑤, 𝑀𝑏) . Both 𝜎  and µ𝑝  are estimated 

based on simulated samples 𝑀𝑓  ∈  𝑆. 

In this framework, the risk function 𝜎(⋅) can be any metric such as risk value or volatility. 

Without loss of generality, we use estimated volatility, which allows the approach to be directly 

evaluated with respect to traditional Markowitz's methodology. So, the optimization problem follows 

as below: 

max
𝑤

𝜇𝑝(𝑤|𝑆) 

min
𝑤

𝜎(𝑤|𝑆) 
(6) 

 

Equation (5) is the objective function. We solve optimization problem like MPT.  

Figure 3 shows the quantum circuit for QuGAN. The number of dimensions and the number 

of distributions to discretize determine the number of qubits. For example, if the number of assets is 

three and each asset has four qubits (discrete with a total distribution of 2^4), we need 12 qubits. 

 

Insert <Figure 3> here 

 

5. Numerical Result 

 

5.1 Data select 

 



To evaluate the proposed QuGAN approach, we apply publicly available data, from Yahoo Finance.1 

Our test uses three-year data from January 2019 to December 2021, stock price data. A generative model 

G is trained using the daily returns of individual stocks. This learned model is used to optimize the 

portfolio. The summary statistics of the daily stock return are reported in Table 1. The number of 

observations is 756.  

 

Insert <Table 1> here 

 

In this task, we construct a portfolio using three individual stocks, Apple, Google and Amazon. 

We select three stocks taking into account the following considerations. First, we include only assets 

for which data is available from at least 2010, according to the Yahoo Finance data source. Yahoo 

Finance found some erroneous data, such as NaN values or 10-fold fluctuations in asset prices in one 

day, etc. These errors are rare, but related assets were excluded. 

 

Insert <Figure 4> here 

 

The portfolio under consideration comprises stocks with low correlations and asset price 

volatility. Figure 4 shows the time series of the stock price and daily return from January 2019 to 

December 2021. When building a portfolio, it should be made up of assets with low correlations. This 

is because it can reduce volatility while maintaining maximum returns. Figure 5 shows the correlation 

matrix with real market data. The heat map below is the correlation coefficient for three stocks: Apple, 

Google, and Amazon. The closer the correlation coefficient is to one, the more assets move together. 

The correlation coefficient between Apple and Google is the highest at 0.12; the correlation is close to 

zero. 

Insert <Figure 5> here 

 

5.2 Benchmarks 

 

We benchmark the proposed QuGAN approach with respect to Markowitz's state-of-the-art portfolio 

optimization (Rubinstein, 2002). QuGAN algorithm returns a discrete set of optimal diversifications 

𝑤 ∈ 𝑋, whereas Markowitz's methodology solves the optimization problem in continuous form. In this 

work, we define a random portfolio of 10,000. Therefore, the return and risk of the 𝑖-th portfolio is 

defined by Equation (1).  

 

1 https://finance.yahoo.com/ 

https://finance.yahoo.com/


  

Figure 6 shows the measured and ranked Sharpe Ratio with real market data. The higher the 

weight for Apple, the higher the Sharpe Ratio, the higher the weight for Amazon, the lower the Sharpe 

Ratio. Figure 7 is the scatter plot of each portfolio by returning the portfolio's risk on the x-axis and the 

y-axis. 

Insert <Figure 6> here 

Insert <Figure 7> here 

 

5.3 Portfolio analysis with QuGAN 

 

QuGAN learns from real data and creates fake market data. Figures 8 and 9 show the results of 

comparing the distribution of fake data generated in this way with real data. Figure 8 is the distribution 

using actual data. All three assets it has the same shape as the normal distribution. Figure 9 is a histogram 

of fake data generated through QuGAN. Since the actual discretization is divided into 16 intervals, a 

curve is seen compared to the original distribution. 

 

Insert <Figure 8> here 

Insert <Figure 9> here 

 

The methodological limitations of GANs and incomplete quantum computers cause this error 

(Preskill, 2018; Wang et al., 2017). This issue makes the correlation coefficient of fake data higher. 

Figure 10 shows the correlation under fake data. This correlation is higher than the correlation in Figure 

5. 

 

Insert <Figure 10> here 

 

 We apply the same methodology in Section 4.2 using this fake data. Based on the weights 

applied to the portfolio in Section 4.2, returns and risks are measured and ranked by applying them to 

fake data. Figure 11 shows the rank of 10,000 random portfolios by measuring the Sharp Ratio. Using 

real market data, a higher weighting of Apple would result in a higher Sharp Ratio, and a higher 

weighting of Amazon would result in a lower Sharp Ratio. This contrasts the higher Sharp Ratio when 

Google's proportion is higher when using actual market data. 

 

Insert <Figure 11> here 

 

We show the return and risk of the portfolio created in this way on a scatter plot in Figure 12. 



This figure shows that an efficient frontier using real data has a higher return with less risk. 

 

Insert <Figure 12> here 

 

6. Conclusion 

 

We train a GuGAN model and compare it to Markowitz. This reference approach is deterministic and 

will always produce the same result given the training data. Proceed as follows. Given a trained QuGAN 

model, we analyze the return risk of QuGAN diversification during a test period and compare the results 

with the diversification proposed by Markowitz. Markowitz and QuGAN diversification at risk are 

associated returns. QuGAN can overcome Markowitz's difficulty in modeling long-term situations. 

QuGAN has two drawbacks. GANs are known to be unstable, and adversarial training often does not 

converge toward equilibrium due to the nonlinear dynamics introduced by the differential equations 

that implement the learning algorithm. Quantum computers also do not exist as perfect machines and 

assume quantum errors. 

Nonetheless, this work presents a pioneering study on portfolio analysis using QuGAN. We 

use quantum computers as a diversification strategy to optimize portfolios to minimize risk and 

maximize expected returns. The key novelty is that the proposed approach addresses a growing problem 

in the high-efficiency market. That is, there is no need to predict medium- to long-term price trends, 

assuming that all currently available information is already indicated in current asset prices. 

Results show clear advantages in the Cutting Edge of Portfolio Optimization Theory. In 

particular, the proposed approach can expose end-users to the possibility of choosing a target risk level 

and suggest specific diversification in current market conditions. 

This study has limited access to actual quantum computers. In future research, it is expected 

that using real quantum computers will improve the learning and accuracy of vast data. 
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<Appendix> Table & Figure 

 

Table 1. Summary of statistics 

This table reports the daily stock return summary statistics from January 2019 to December 2021. The 

number of observations is 755. 

index Apple Google Amazon 

count 755 755 755 

mean 0.002269 0.001526 0.001211 

std 0.021506 0.018668 0.018513 

min -0.128647 -0.116341 -0.079221 

25% -0.00751 -0.006339 -0.00841 

50% 0.001786 0.001694 0.00134 

75% 0.013234 0.010331 0.010611 

max 0.119808 0.096202 0.079295 

 

Figure 1. Efficient frontier with risky assets 

 

 

Figure 2. Diagram of QuGAN algorithm 

This figure is a schematic diagram of a series of processes for QuGAN. 

 

 

  



Figure 3. Quantum circuit of QuGAN 

This figure is a schematic diagram of a series of processes for QuGAN.  

 

 

Figure 4. Time Series of stock price and daily return 

This figure shows the time series of the stock price and daily return from January 2019 to December 

2021.  

 

 

Figure 5. Correlation between 3 stocks 

This figure shows the correlation matrix with real market data from January 2019 to December 2021.  

When building a portfolio, it should be made up of assets with low correlations. This is because it can 

reduce volatility while maintaining maximum returns. The heat map below is the correlation coefficient 

for three stocks: Apple, Google, and Amazon. The closer the correlation coefficient is to 1, the more 

assets move together. The correlation coefficient between Apple and Google is the highest at 0.12; the 

correlation is close to 0. 

 

 



Figure 6. Ranking of optimal portfolios by Sharp Ratio 

This figure shows the ranking of 10000 random portfolios by measuring the Sharp Ratio. In the case of 

using actual market data, the higher the proportion of Apple, the higher the Sharp Ratio, and the higher 

the proportion of Amazon, the lower the Sharp Ratio. 

 

 

Figure 7. Optimal portfolio with real market data 

 

 

Figure 8. Histogram of daily return with real market data 

This figure shows the histogram of daily returns from January 2019 to December 2021. All histograms 

have the shape of a normal distribution. 

 

 

  



Figure 9. Histogram of daily return with QuGAN 

This figure shows the histogram of daily returns with QuGAN. The sample is 1510 data. 

 

 

Figure 10. correlation of three assets with QuGAN 

This figure shows a correlation matrix with fake market data. The heatmap below shows the correlation 

coefficients for Apple, Google, and Amazon stocks. QuGAN's correlation is higher than that of real 

market data. 

 

 

Figure 11. Ranking of Optimal Portfolio by Sharp Ration with QuGAN 

This figure shows the ranking of 10000 random portfolios by measuring the Sharp Ratio. In the case of 

using actual market data, the higher the proportion of Apple, the higher the Sharp Ratio, and the higher 

the proportion of Amazon, the lower the Sharp Ratio. 

 

  



Figure 12. Return per unit risk with QuGAN 
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