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Abstract. We propose a CBO algorithm incorporating repulsion between particles. The repulsive

term is introduced to challenge the discontinuation of searching, after particles are frozen around
an optimum at an instant. By introducing repulsion to the CBO algorithm, both attractive and

repulsive forces of particles are controlled to efficiently search for optimal points in both static

and dynamic environments. We provide an analytical framework of the proposed CBO model with
repulsion (in short, Repulsive CBO or R-CBO) and demonstrate its emergent behavior analytically

and numerically. We test R-CBO’s performance in solving both convex and non-convex optimization

problems. Our numerical simulation results show that the repulsive CBO algorithm is superior to
the vanilla(original) CBO algorithm and its variants.

1. Introduction

Consensus Based Optimization (CBO) algorithm has been referred as a simple but advanced tool
of approximating the optimum in complex optimization problems [8, 10]. The CBO algorithms are
efficiently viable in obtaining a precise solution faster than other gradient-based methods [3], e.g.,
particle swarm optimization [7] by the nature of first-order searching [4, 8]. Particularly, the CBO
has proved its efficiency in solving non-convex, non-regular objective function over high-dimensional
manifolds [5]. Its beauty is also found in its variations from a predictor-corrector type of CBO [1], the
CBO with adaptive momentum (Adam-CBO) [6], to the CBO with adaptive momentum and average
drift [2].

In this paper, we propose a new CBO-based algorithm by considering repulsion of particles. The
major motivation of developing a repulsion term is a sinking problem: particles of the vanilla CBO [8]
are sunk near an instant optimum and easily lose their momentum to restart searching for a new
optimum. The challenge is nontrivial to solve online optimization problems like developing intelligent
robotic systems, a predator-prey problem, a probabilistic mutation model in genome evolution, and
online portfolio selection. The essence of such real problems is on developing a tool to track a target
or plan a path in complex, stochastic, and dynamic environments. When repulsive forces are well-
managed, a cloud of particles sustain its shape to keep their momentum.

we introduce both drift and repulsion rates to control attractive and repulsive forces in continuous
searching for optimal points. We provide an analytical framework of the proposed CBO model with
repulsion (in short, Repulsive CBO or R-CBO) and demonstrate its emergent behavior analytically
and numerically. We test R-CBO’s performance in solving both convex and non-convex optimization
problems. The simulation results demonstrate the superiority of R-CBO over vanilla CBO [4, 5] and
Adam-CBO [6].

The results imply that a repulsive force controller is a key to challenge online optimization problems
that are often found from many real problems including autonomous multi-agent control and online
learning from flexible big data. Particularly, the repulsion term is significant in lowering tracking errors
and reducing searching time in real online optimization problems.

The rest of this paper is organized as follows. In Section 2, we briefly provide preliminaries of the
vanilla CBO, and we introduce R-CBO and its mathematical analysis. Finally, Section 3 is devoted
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to numerical simulations to compare the vanilla CBO and the proposed R-CBO.

Notation. Throughout the paper, we use the following handy notation:

X = (x1, · · · ,xN ) ∈ Rd×N , xi = (xi,1, · · · , xi,d) ∈ Rd, ∀ i ∈ [N ] := {1, · · · , N}.

When X, xi’s, and xi,k’s depend on time t, subscript will be used to denote this dependencies: Xt,

xi
t, and xi,k

t .

2. CBO with repulsion (repulsive CBO, R-CBO).

In this section, we present the CBO with repulsion. First, we begin with a brief discussion on the
vanilla CBO.

Consider N particles with position xk ∈ Rd for k ∈ [N ]. The d-dimensional position of the k-th
sample path at time t is denoted by xk

t ∈ Rd, and we set x∗ ∈ Rd to be the global optimum for an
objective function L over Rd:

x∗ ∈ argmin
x∈Rd

L(x).

Here, L may be neither convex nor differentiable. Then, the vanilla CBO [10] is given by the following
system of stochastic differential equations:
(2.1)

dxi
t = λ(M(Xt)− xi

t)dt+ σ(M(Xt)− xi
t)⊙ dWt, ∀ t > 0,

ωi
t :=

e−βL(xi
t)∑N

j=1 e
−βL(xj

t)
,

N∑
i=1

ωi
t = 1, M(Xt) :=

N∑
i=1

ωi
tx

i
t, Xt := (x1

t , · · · ,xN
t ), ∀ i ∈ [N ]

where M(Xt) is the adaptive weighted average of xk
t ’s, λ and σ represent the drift rate and noise

intensity, respectively, and β > 0 is given hyperparameter. The coefficient process ωi
t can be regarded as

the weight of each particle xi
t. Here, Wt := [W 1

t , · · · ,W d
t ]

⊤ and each component W l
t is one-dimensional

Brownian motion defined on the common probability space (Ω,F , (Ft)t≥0,P). All W l
t ’s are i.i.d. and

their mean and covariance are given as follows:

E[W l
t ] = 0 ∀ l ∈ [d] and E[W l1

t W l2
t ] = δl1l2t, ∀ l1, l2 ∈ [d].

In addition, for two matrices A = (aij) and B = (bij) of the same size, we denote by A ⊙ B their
Hadamard product, i.e. A⊙B = (aijbij). On the mathematical analysis of the CBO model, we refer
to [4, 8] for the emergence of global consensus and [8] for the asymptotic convergence to a global
optimum.

Next, we are ready to state the our problem setting and the CBO with a repulsion. Consider a global
optimization problem for the time-dependent stochastic objective function L : [0,∞)× Rd × Ω → R.
Note that global minimizer x∗

t is time-dependent:

x∗
t (ω) ∈ argmin

x∈Rd

L(t,x, ω), ∀ t ≥ 0, a.s. ω ∈ Ω.

From now on, if there is no confusion, ω can be omitted. Here, L(t,x, ω) may be neither convex nor
differentiable with respect to x for each t. Now, we propose the R-CBO model as follows:

(2.2)


dxi

t = λ0(M(Xt)− xi
t)dt− λ1Nωi

t(x̄t − xi
t)dt+ σ(M(Xt)− xi

t)⊙ dWt, ∀ t > 0,

ωi
t :=

e−βL(t,xi
t)∑N

j=1 e
−βL(t,xj

t)
, M(Xt) :=

N∑
i=1

ωi
tx

i
t, x̄t :=

1

N

N∑
j=1

xj
t , ∀ i ∈ [N ],

where, λ0, λ1 > 0 are the rates of drift and repulsion, respectively. In the absence of the repulsion
term −λ1Nωi

t(x̄t − xi
t)dt, the system (2.2) becomes the vanilla CBO (2.1).

Note that any point in {X ∈ Rd×N : x1 = · · · = xN} is an equilibrium of (2.2). If λ0 ≫ λ1,
particles might relax to a consensus state exponentially fast as can be seen in [4, 8]. Thus, it stops
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chasing time-dependent global optimum x∗
t . On the other hand, if λ0 ≪ λ1, then the repulsive term is

stronger than that of the relaxation (attractive) term, as a result, resulting relative distances between
particles diverge asymptotically. Since we require that particles form a point cloud aroud x∗

t , that is

lim inf
t→∞

|xi
t(ω)− x∗

t (ω)| < ε, ∀ i ∈ [N ], a.s. ω ∈ Ω,(2.3)

for sufficiently small ε > 0, we need to consider the case of λ0 ≈ λ1 in what follows. To illustrate the
role of repulsion term in (2.2), we consider the following simple setting:

d = 1, N = 2, σ = 0, λ0 = λ1 = λ > 0,

and we further assume that x1,1
0 and x2,1

0 are deterministic constants. In this setting, the model (2.2)
becomes

(2.4)


(x1(t, ω), x2(t, ω), ω1(t, ω), ω2(t, ω), x

∗(t, ω)) := (x1,1
t (ω), x2,1

t (ω), ω1
t (ω), ω

2
t (ω), x

∗
t (ω)),

ẋ1 = λ(ω1x1 + ω2x2 − x1)− λω1(x2 − x1),

ẋ2 = λ(ω1x1 + ω2x2 − x2)− λω2(x1 − x2), ∀ t > 0.

Then, it is easy to see that ω1 + ω2 = 1 and

d

dt
(x2 − x1) = 0, ∀ t > 0, i.e.,

x2(t, ω)− x1(t, ω) = x2(0)− x1(0), ∀ t ≥ 0, ∀ ω ∈ Ω.
(2.5)

Next, we first state our sufficient framework (F1) − (F3) which exhibits the finite-time entrance of
optimum point x∗ inside the interval with ending points x1 and x2 as follows.

• (F1): Optimal point path x∗(t, ω) is almost surely continuous in time t, and initial data satisfy

(2.6) x2(0)− x1(0) = d0, for some d0 > 0.

• (F2): For almost sure ω ∈ Ω and for each t ≥ 0, L(t, x, ω) is strictly convex in x-variable and
there exist positive constants m and d ∈ (0, d0) such that

(2.7) |L(t, x, ω)− L(t, x± d0, ω)| ≥ md0, ∀ x ∈ (−∞, x∗(t, ω)− d] ∪ [x∗(t, ω) + d,∞).

• (F3): R is a positive constant such that

(2.8) 0 < R <
βmd20λ

2 + βmd0
,

Theorem 2.1. Suppose the framework (F1)−(F3) holds, and let (x1, x2) be a global solution to (2.4)
with deterministic initial data (x1(0), x2(0)). Then, the following assertions hold.

(1) Suppose that ω ∈ Ω satisfies (F2),

x∗(0, ω) /∈
(
x1(0), x2(0)

)
, and lim sup

t→∞

|x∗(t, ω)|
t

< R.(2.9)

Then, there exists a finite time te = te(ω) > 0 such that

x1(te) < x∗(te, ω) < x2(te).

(2) Suppose that ω ∈ Ω satisfies (F2),

x∗(0, ω) ∈
(
x1(0), x2(0)

)
, and

|x∗(t, ω)− x∗(s, ω)|
t− s

< R, for all t > s ≥ 0.

Then, we have

x∗(t, ω) ∈
(
x1(t, ω), x2(t, ω)

)
, ∀ t ≥ 0.(2.10)
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(3) Suppose that ω ∈ Ω satisfies (F2) and

∃ t0 ∈ [0,∞) such that
|x∗(t, ω)− x∗(s, ω)|

t− s
< R, for all t > s ≥ t0.

Then, there exists a finite time te = te(ω) ≥ t0 such that

x∗(t, ω) ∈
(
x1(t, ω), x2(t, ω)

)
, ∀ t ≥ te.

Proof. It follows from (2.5) and (2.6) that

(2.11) x2(t) = x1(t) + d0, ∀ t ≥ 0, ∀ ω ∈ Ω.

From now on, if there is no confusion, ω can be omitted in the proof.

(1) Without loss of generality, we may assume that

x1(0) < x2(0) < x∗(0).

Since L(t, ·) is strictly convex, we have

L
(
0, x1(0)

)
> L

(
0, x2(0)

)
.(2.12)

Now, we split the proof into two cases depending on whether (2.12) holds for all t ≥ 0 or not.

• Case A: Suppose that there exists a finite time t′ = t′(ω) > 0 such that

L
(
t′, x1(t

′)
)
= L

(
t′, x2(t

′)
)
,

then strict convexity of L(t, ·) implies

x1(t
′) < x∗(t′) < x2(t

′),

which gives our desired result.

• Case B: Suppose that

(2.13) L
(
t, x1(t)

)
> L

(
t, x2(t)

)
, ∀ t ≥ 0.

By the convexity of L(t, ·), one has

x1(t) < x2(t) < x∗(t), ∀ t ≥ 0.

For some d ∈ (0, d0) appearing in (2.7), we define a temporal set T and its supremum τ∗ = τ∗(ω):

T :=
{
t ∈ [0,∞) : x1(t) < x∗(t)− d

}
and τ∗ := sup T .

It follows from
x∗(0) > x2(0) = d0 + x1(0) > d+ x1(0)

that 0 ∈ T , and the continuity of x∗ − x1 in t-variable implies that set T contains a nonempty open
interval. Thus, we have

τ∗ ∈ (0,∞].

Now, we consider the following two cases:

Either 0 < τ∗ < ∞ or τ∗ = ∞.

⋄ Case B.1: If 0 < τ∗ < ∞, then we obtain the desired estimate with te = τ∗:

x∗(τ∗) = x1(τ
∗) + d < x1(τ

∗) + d0 = x2(τ
∗), i.e., x∗(τ∗) ∈ (x1(τ

∗), x2(τ
∗)).

⋄ Case B.2: Suppose τ∗ = ∞. By (2.9), there exists a finite time τ0 > 0 such that

|x∗(t)| ≤ Rt for all t ≥ τ0.
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Then, we use (2.7), (2.13) and ex ≥ 1 + x for x ≥ 0 to get

ω1(t) =
1

1 + eβ(L(t,x1(t))−L(t,x2(t)))
≤ 1

2 + β(L(t, x1(t))− L(t, x2(t)))

=
1

2 + β|L(t, x1(t))− L(t, x2(t))|
≤ 1

2 + βmd0
, ∀ t ≥ 0.

This yields

(2.14) ω2 − ω1 = 1− 2ω1 ≥ βmd0
2 + βmd0

, ∀ t ≥ 0.

It follows from (2.4)1, (2.5), (2.14), and ω1 + ω2 = 1 that

(2.15) ẋ1 = d0λ(ω2 − ω1) ≥
βmd20λ

2 + βmd0
, ∀ t ≥ 0.

Thus, for all t ≥ τ0, we have

0 < d < x∗(t)− x1(t) = x∗(t)−
∫ t

0

ẋ1(s)ds− x1(0) ≤
(
R− βmd20λ

2 + βmd0

)
︸ ︷︷ ︸

<0 by (2.8)

t− x1(0).

We let t → ∞ to derive a contradiction.

(2) Suppose the contrary of (2.10) holds, then without loss of generality, we assume that there exists
a finite time t′′ > 0 such that

x∗(t′′) = x2(t
′′) and x∗(t) ∈ (x1(t), x2(t)) for all t < t′′.

For d ∈ (0, d0), we choose sufficiently small δ ∈ (0, t′′) such that

x∗(t)− x1(t) > d, ∀ t ∈ [t′′ − δ, t′′].

This gives a contradiction to the following relation:

0 < d0 −
(
x∗(t′′ − δ)− x1(t

′′ − δ)
)
= x∗(t′′)− x1(t

′′)−
(
x∗(t′′ − δ)− x1(t

′′ − δ)
)

= x∗(t′′)− x∗(t′′ − δ)−
∫ t′′

t′′−δ

ẋ1(s)ds ≤
(
R− βmd20λ

2 + βmd0

)
δ < 0,

where we used (2.11) and (2.15).

(3) Since (2.4) is autonomous, desired result directly comes from (1) and (2). □

In Theorem 2.1 (1), (2.9) does not guarantee

|x∗(t, ω)− x∗(s, ω)|
t− s

< R, for all t > s ≥ te.

Hence, x∗(t′, ω) /∈
(
x1(t

′), x2(t
′)
)
can occur at some t′ > te. However, since (2.4) is autonomous, there

exists t′′ = t′′(ω) > t′ such that
x1(t

′′) < x∗(t′′, ω) < x2(t
′′).

Inductively, there exists a positive sequence (tn = tn(ω))n≥0 such that

tn ↗ ∞ and x1(tn) < x∗(tn, ω) < x2(tn),

which implies that

lim inf
t→∞

|xi(t)− x∗(t, ω)| < d0, i = 1, 2.

We summarize aforementioned arguments in the following corollary on the relation between Theorem
2.1 and (2.3) which is the main purpose of our R-CBO model.
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Corollary 2.2. Suppose the framework (F1) − (F3) holds, and let (x1, x2) be a global solution to
(2.4) with deterministic initial data (x1(0), x2(0)). If we further assume that

lim sup
t→∞

|x∗(t, ω)|
t

< R, a.s. ω ∈ Ω,

then we have

lim inf
t→∞

|xi(t)− x∗(t, ω)| < d0, i = 1, 2, a.s. ω ∈ Ω.

3. Numerical simulations

We present results from various numerical simulations in this section. We investigate the predicting
power of our R-CBO in optimization problems of a high-dimensional nonconvex function, a time-
dependent stochastic function, and a real online portfolio optimization problem. Prediction errors and
computation time of R-CBO are compared with those of vanilla CBO [4] and CBO with adaptive
momentum (Adam-CBO) [6]. Second test results show that R-CBO performs better than other two
CBO-based algorithms in minimizing average loss of approximating an optimal point. The third test
aims to evaluate the efficiency of R-CBO in searching for solutions of real online high-dimensional
problems with constraints.

3.1. High-dimensional Optimization. To evaluate the performance of R-CBO compared to vanilla
and Adam CBO, we measure prediction error and computation errors of three CBO-based algorithms
in approximating the Rastrigin function:

f(x) =
1

d

d∑
i=1

[
(xi)2 − 10 cos(2πxi) + 10

]
.

Note that f(x) is non-convex and its global minimum value is attained at x = 0. In the experiment,
we set the global minima not to be in the support of the distribution of initial data. That is, xi

0’s
are independent and identically distributed random variables and 0 is not contained in the support of
law

(
xi
0

)
. We intend this setting to see if R-CBO can resolve the problem in which the vanilla CBO

stops continuous search by particles sinked near local minima.
For numerical simulations, we set (hyper)parameters as

d = 50, N = 150, ∆t = 0.3, t ∈ [0, 600], β = 200, λ0 = 1, σ = 0.8.

We use the following values of hyper-parameters for the Adam-CBO, referring to the most frequently
setting in the Adam-based approximation experiment like tests in [6]:

β1 = 0.9 and β2 = 0.99.

Finally, the initial data xi
0’s are randomly chosen from the uniform distribution U([2, 4]d) so that the

global minimizer 0 of f(x) is not included in [2, 4]d.
The average loss is defined by

E
[

1

niter

niter∑
n=1

L

(
1

N

N∑
k=1

xk
n∆t

)]
,

where niter is the number of iteration and the expectation is calculated using the average of 100 sample
paths.

In Figure 1, we summarize average losses of Vanilla, Adam and Repulsive CBO algorithms. Given
the vanilla CBO’s average loss as a unity (black-solid line), we plot relative average losses of Adam-
CBO and R-CBO to the unity. The relative losses are plotted over λ1 in Figure 1 to examine the
predicting power of R-CBO and Adam-CBO which show different errors by changes in λ1.

The blue-dash-dotted curve shows that the average loss of R-CBO decreases with increasing λ1 until
λ1 = 4.0. Furthermore, the R-CBO shows better performance than the Adam-CBO given 1.5 < λ1 ≤ 4.
The results imply that the R-CBO outperforms the vanilla CBO for some bounded λ1. Both Adam-
CBO and R-CBO took 0.0019 seconds for each iterations.
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Figure 1. The average losses of R-CBO and Adam-CBO relative to the vanilla CBO
for various λ1 in nonconvex high-dimensional optimization

It is noteworthy to find from Figure 1 that λ1 is a key parameter to manage the approximating
errors of the R-CBO. Although the average loss of Adam-CBO maintains around 0.7 over λ1, the
R-CBO is capable of lowering its error by 60% at maximum with the appropriate choice of λ1. As
explained in (2.2), λ1 controls the repulsive force of a particle. When the repulsive force is too strong
by a large λ1 like λ1 > 4, relative distances between particles are diverged.

3.2. Online Optimization. When the problem is to keep tracking down optimal points over time-
varying searching space, we expect R-CBO outperforms other CBO-based algorithms. It is also worth
to investigate the role of repulsive force in searching optimal points over stochastically changing
environment. In this section, we conduct numerical tests on the efficiency of R-CBO relative to other
CBO-based methods in optimization in such an environment. Particularly, by comparing R-CBO’s
results with them of Adam-CBO, which is well-known for its efficiency in online optimization, we
examine the potential use of R-CBO in real complex problems.

As online optimization tasks, we introduce two online optimization problems: for x = (x1, · · · , xd)⊤ ∈
Rd,

f(t,x) =
1

d

d∑
i=1

[
(xi −Bi

t)
2
]
,

g(t,x) =
1

d

d∑
i=1

[
(xi −Bi

t)
2 − 10 cos(2π(xi −Bi

t)) + 10
]
.

Here, Bt = (B1
t , · · · , Bd

t )
⊤ is a d-dimensional Brownian motion with B0 = 0. Note that f(t,x) is a

time-dependent convex function in spatial variable x, whereas g(t,x) is a time-dependent non-convex
function with respect to x. It is obtained by shifting the Rastrigin function along Bt. Moreover, each
function’s minimum value is found at x = Bt.

In numerical examples below, we use parameters

d = 10, N = 30, ∆t = 0.1, t ∈ [0, 10].

We choose hyperparameters as β = 50, λ0 = 1, and σ = 0.8. Hyperparameters for Adam-CBO are set
by:

β1 = 0.9 and β2 = 0.99.
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The initial data {xi
0} are randomly chosen from the uniform distribution U([2, 4]d). By using same

initial data with them of previous experiment, the global minimizers of f(t,x) and g(t,x) are not
included in [2, 4]d at t = 0. We compute the average loss by

1

niter

niter∑
n=1

L

(
1

N

N∑
k=1

xk
n∆t

)
,

where niter is the number of iteration. Each experiment was conducted in 100 times (100 sample
paths).

We describe positions of particles over different time-frames in Figure 2 and 3. The first and second
coordinates of particles (depicted in blue) xi

t and the global minimizer (depicted in orange) according
to Brownian motion from t = 0 to t = 10. In Figure 2, particles that move according to the vanilla-CBO
algorithm sink in one point t = 5. The vanilla CBO fails to approximate the moving optimum over
time. On the other hand, Figure 3 shows trajectories of particles approaching to the global minimizer.
Notably, the R-CBO algorithm continuously generates different particle-clouds that keep including
the moving global minimizer.

(a) t = 0 (b) t = 2.5 (c) t = 5 (d) t = 10

Figure 2. The optimal point (in orange) and vanilla CBO particles (in blue)

(a) t = 0 (b) t = 2.5 (c) t = 5 (d) t = 10

Figure 3. The optimal point (in orange) and R-CBO particles (in blue)

We summarize the results of L = f(t,x) on the left and L = g(t,x) on the right panel in Table
1. In each panel, we present the average loss of the R-CBO under “R-CBO” and that of Adam-CBO
under “Adam-CBO”, respectively. Also, note that we report errors from the vanilla CBO under the
R-CBO with λ1 = 0. The results show that our R-CBO method outperforms the Adam-CBO when
the coefficient of controlling repulsive force, λ1 is close to λ0 = 0.5. Both R-CBO and Adam-CBO
algorthims show better performance than the vanilla CBO.

3.3. Online Portfolio Optimization on High-Dimensional Stochastic Space. From our nu-
merical tests of simple online optimization problems in Section 3.2, we find that well-managed repulsive
force contributes to increasing searching efficiency of CBO by supporting candidate solutions (parti-
cles) distributed to catch moving an optimal point. In this section, we test the role of repulsive force
to balance out particles’ strong attraction in improving its ability to solve real optimization problems.
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λ1

f(t,x) g(t,x)

R-CBO Adam-CBO R-CBO Adam-CBO

0 1,040.68∗ 150.17 107.43∗ 29.04

0.1 494.71 133.67 99.16 25.34

0.2 91.55 73.91 83.18 23.14

0.3 40.61 65.48 54.61 21.28

0.4 32.12 68.78 35.33 21.06

0.5 33.09 78.19 22.29 20.91

0.6 34.40 86.99 19.39 21.09

0.7 37.72 100.52 19.20 22.48

0.8 40.83 124.63 18.69 26.60

0.9 44.70 175.05 18.69 28.14

1.0 49.08 196.40 19.23 31.64

Table 1. Average loss of CBO-based algorithms in online optimization
Note: Results are obtained from R-CBO and Adam-CBO algorithms with various λ1 applied to

approximate the optimal points of f(t,x) and g(t,x), respectively. In each experiment, we set d =
10, N = 30, ∆t = 0.1, t ∈ [0, 10]. Hyperparameters are set by β = 50, λ0 = 1, and σ = 0.8.

For the test of Adam-CBO, we set β1 = 0.9 and β2 = 0.99. Results marked by ∗ are from R-CBO

with λ1 = 0 so that the same results are obtained from vanilla CBO.

One of popular online optimization problems in complex environment is finding the optimal portfolio
weight [1, 2]. By referring to the theoretical foundation of asset pricing in a no-arbitrage market [9],
we consider an investor’s problem of choosing optimal weights on multiple (possibly infinite number
of) assets with his/her total saving. The simple rule of the optimization problem is to choose the best
combination of risky assets yielding maximal returns given the portfolio’s total risk.

Since countless buyers and suppliers interact each other at any time with no entry barrier assump-
tion, an asset market is stochastically and continuously changing. Based on simple investment returns

expressed in percentage changes in values of assets over n periods such that Pt−Pt−n

Pt−n
, the continuously

compounding returns from an asset investment are given as logPt − logPt−n. Having observed ex-
pected returns of multiple assets, an investor chooses the portfolio that can generate maximal returns
given its volatility over time [11]. Since then, the Sharpe ratio, the excess return relative to volatility,
has been widely used as a measure to evaluate assets and portfolios.

We use the Sharpe ratio as an objective function in (2.2) and design numerical experiments to
evaluate the performance of R-CBO. Our experiment was conducted in similar but more complex
environment than that of [1, 2]. Specifically, we consider all stocks that have been consistently listed
on the S&P 500 index. The optimal portfolio weight is found for each of all 484 stocks consistently
listed on the S&P 500 index from January 1, 2017 to December 31, 20191. We conduct additional tests
on optimizing the portfolio weight on 50 random stocks from the S&P500 and 500 randomly picked
stocks on S&P 500 index, respectively, to see the variance of prediction results.

In the experiment, particles are minimizers of the loss function, defined as the negative Sharpe
ratio. Searching is designed online to find another minimizer of the new loss function given at t + 1
after its search at t. Each search is conducted within a window of 60 trading days by following [2].
The online optimization rule is applied to the 60-day window over the sample period, in which a

1Although five hundred stocks are listed at each time frame, 484 stocks have been listed consistently over the sample
period. Some stocks are delisted or newly-listed by regular examination of U.S. Securities and Exchange Commission,

SEC.
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window is marked at t of a starting date of the window and rolled over by one trading day until
the last trading day (Dec. 31st, 2019) of the total sample period. Over the total sample period, we
evaluate the performance of R-CBO relative to the benchmark solution of Sequential Least Squares
Programming (SLSQP) algorithm2. We consider the SLSQP’s solution as a correct answer, because
it is based on the Jacobian after observing the entire period. However, the SLSQP’s solution is not
feasible for an investor without foreseeing stochastically time-varying returns.

The R-CBO test environment is set by λ0 = 1 and λ1 = 12. Additionally, we configure the number
of particles N at 2,500 and 250 for S&P 500 data set and randomly sampled 50 data set, respectively.
The parameters β and σ are fixed at 2,000 and 0.8, respectively. The initial data set, denoted as xi

0, is
sampled from a uniform distribution U([0, 1]d) which then projected in to S := {x|

∑
xi = 1, xi ≥ 0}.

Following each iteration, a projection is performed onto the set S. This step ensures that each particle
accurately represents the weight of a stock in the portfolio.

Algorithm
S&P 500 Index Random 50 stocks

Computing Time Sharpe Ratio Computing Time Sharpe Ratio

SLSQP 38.73 sec. 13.95 0.25 sec. 7.63

R-CBO 250 0.92 sec. 3.65 0.23 sec. 5.66

R-CBO 2500 8.59 sec. 5.35 2.07 sec. 6.71

Table 2. Results of R-CB0 on the Portfolio Section Problem
Note: Results are obtained from SLSQP and R-CBO algorithms with different number of particles

applied to approximate the optimal portfolio weight vector of maximizing the expected excess return

relative to volatility (Sharpe ratio). We set λ0 = 1, λ1 = 12, β = 2, 000, and σ = 0.8. See text for
initial data setting. Computing time is in seconds.

Table 2 presents the computing time and Sharpe ratio achieved by SLSQP, R-CBO with 250
particles, and R-CBO with 2,500 particles. Both computing time and Sharpe ratio are given by the
average of measures over windows. We conduct two experiments to evaluate the performance of R-
CBO by setting the portfolio optimization problem using i) all stocks of the S&P500 index (on the
left panel) and ii) randomly chosen 50 stocks from the S&P500 index. The optimal portfolio predicted
by R-CBO (3.65) over all S&P 500 stocks achieves 26% of the SLSQP’s solution (13.95). However, we
find potential benefits of using R-CBO from its searching speed (2.23% of the SLSQP’s computational
speed) and its better improvement in the Sharpe ratio by using more particles (from 250 to 2500).
Such tendencies are consistently found from tests of using random 50 stocks.

In our examination of numerical results, we find that there are certain types of portfolios are hardly
projected by the R-CBO. Particularly, when the portfolio at t + 1 experience a large jump from the
portfolio at t by unexpected shocks or noise to a firm or an asset market, such a large jump is hardly
predicted by the R-CBO based on realized returns data until t. Specifically, we show details about
results from numerical tests in Figure 4. Figure 4 illustrates time series of the Sharpe ratio attained by
SLSQP and R-CBO, respectively. While the SLSQP method generally exhibits higher Sharpe ratios
than others, our R-CBO algorithm can trace out the trend of SLSQP. The R-CBO with 250 particles
show the least Sharpe ratio, particularly when the ratio changes through a dramatic turning point.

For example, we find multiple corner solutions with many zero weights on assets are not easily
found from on-time search. However, when we limit the searching space with a reasonable number
of assets from 500 to 50 stocks as suggested in Table 2, we find a room to improve the R-CBO’s
searching capability. For example, 30-40 stocks are included in a basket of a diversified portfolio [12].
Also, although it is hard to deal with the corner solution problem for any optimizer, we find that a

2SLSQP uses the Han-Powell quasi-Newton method with a BFGS update of the B-matrix and an L1-test function

in the step-length algorithm. The optimizer uses a slightly modified version of Lawson and Hanson’s NNLS nonlinear
least-squares solver, which is available in the SciPy optimization library.



CONSENSUS-BASED OPTIMIZATION ALGORITHM WITH REPULSIONS 11

Figure 4. Sharpe Ratio’s Time Series Plot by SLSQP and R-CBO
Note: Results are obtained from SLSQP and R-CBO algorithms with different number of particles
applied to approximate the optimal portfolio weight vector of maximizing the expected excess return

relative to volatility (Sharpe ratio). We set λ0 = 1, λ1 = 12, β = 2, 000, and σ = 0.8. See text for

initial data setting.

Figure 5. Time Series Wealth of R-CBO Algorithms on Online Portfolio Optimiza-
tion
Note: Results are obtained from SLSQP and R-CBO algorithms with different number of particles

applied to approximate the optimal portfolio weight vector of maximizing the expected excess return
relative to volatility (Sharpe ratio). We set λ0 = 1, λ1 = 12, β = 2, 000, and σ = 0.8. See text for

initial data setting.

repulsive force controller is a key to resolve this issue as described by the R-CBO’s ability to maintain
its non-degenerate searching radius as shown in Figure 3.

Furthermore, we conduct another numerical test for predicting powers of the SLSQP and R-CBO. In
this setting, we do not provide the full information of asset returns to educate the SLSQP to make the
comparison fair. In Figure 5, we present the results by depicting the time series of wealth accumulated
by the suggested portfolio optimization rule. In this test, we also test the uniform portfolio, which
applies the equal weight to any asset in a portfolio.

Without seeing entire data, the R-CBO with either 250 or 2500 particles outperform the SLSQP
and uniform portfolio. Table 3 summarizes the average terminal wealth for each method from 100
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Optimization algorithm Wealth

SLSQP 1.52

Uniform-style (Random particles) 1.56

R-CBO (using 250 particles) 1.69 (0.313)

R-CBO (using 2,500 particles) 1.74 (0.07)

Table 3. Final Wealth of SLSQP, Uniform Portfolio, and R-CBO Algorithms on
Online Portfolio Optimization
Note: Results are obtained from SLSQP and R-CBO algorithms with different number of particles
applied to approximate the optimal portfolio weight vector of maximizing the expected excess return

relative to volatility (Sharpe ratio). We set λ0 = 1, λ1 = 12, β = 2, 000, and σ = 0.8. See text for

initial data setting.

independent experiments. Notably, our R-CBO method exhibits the highest terminal wealth and the
standard deviation reduces with increasing the number of particles. Remark that the larger the num-
ber of particles, the terminal wealth increases with lower standard deviation, indicating the number
of particles increase performance and robustness of our model. Our proposed method (R-CBO) ex-
hibits promising outcomes in solving real problems in an efficient computational environment with
appropriate choices of hyperparameters.
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