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Abstract

This study investigates the relationships for high frequency (HF) market-making strategies

and the expected terminal wealth to diverse market scenarios through simulation analy-

sis. We employ the optimal trading strategy for HF market-making constructed on the

Hawkes arrival model, which incorporates self/mutually-exciting factors reflecting synchro-

nizing tendency in buy and sell order dynamics. We employ the deep Galerkin method

(DGM) to estimate a solution of the high-dimensional partial differential equation that solves

the market-maker’s optimization problem. With the validation scheme by verifying the dis-

tribution of the value function, we assess the DGM-approximated solutions under training of

various batch size and learning rate for the selection of the most efficient and robust DGM

training model. Using the optimal training model, we conduct sensitivity analysis on the

market-maker’s profitability with respect to changes in HF market stability caused by several

noise components and potential market manipulation by spoofers. Finally, we discuss the

practical implications of our findings for enhancing efficacy in HF market-making based on

our simulation results.

Keywords: Optimal market-making strategy, Deep neural network, Deep Galerkin

method, Validation, Market stability, Spoofing, Sensitivity analysis

1. Introduction

High-frequency (HF) trading has experienced significant growth over the past two decades

largely propelled by regulatory changes during the 2000s. Decimalization in 20011 and Reg

NMS in 2007 (SEC, 2005) are two key changes that played pivotal roles in the expansion

of HF trading. Decimalization mandated that securities be priced in increments of one cent

rather than fractions of a dollar. This change made it economically feasible for market

participants to engage in HF trading by reducing bid-ask spreads and transaction costs,
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yielding effectively lowering the barriers to entry for HF traders. Moreover, Reg NMS aimed

to enhance competition among exchanges by promoting the best execution of trades and

ensuring that investors receive the best possible prices. This regulation further encouraged

the adoption of HF trading strategies, as emphasizing the importance of speed and efficiency

in executing trades to obtain favorable prices. As a result of these regulatory changes along

with development of IT technologies, HF trading has become a dominant force in modern

financial markets. Estimates suggest that HF trading volume accounts for a substantial

portion of trading activity, ranging from 50 to 70% in US equity and futures markets, while

it is estimated to be 40% in the European equity market (Biais and Woolley, 2011; Miller

and Shorter, 2016).

Among the strategies employed by HF traders, market-making accounts for 80% in in-

cumbent exchanges and new entrant markets (Menkveld, 2013), which is the most prevail-

ing strategy. Market-making focuses on enhancing liquidity for market participants while

generating profits from the bid-ask spread, which involves managing risks associated with

inventory, execution, and adverse selection. The distinguishing factor of HF market-making

lies in its reliance on order execution speed and automated systems, setting it apart from

traditional slower traders. HF market-makers leverage the minimal latency in systems to

exploit profit opportunities ahead of slower traders.

Due to the huge involvement of HF market-making trading, the relevant literature pri-

marily focuses on the impact and implications of HF traders’ market participation in terms

of market stability and efficiency. Ait-Sahalia and Brunetti (2020) provide empirical evi-

dence suggesting that increased noise in price processes leads to a greater number of trading

opportunities for HF traders. However, they argue that this heightened activity does not

necessarily translate into increased market volatility. In contrast, Zhang (2010) presents a

differing perspective, demonstrating that HF trading activity exhibits a positive correlation

with stock price volatility and negatively linked to market ability to incorporate firm’s funda-

mental news into asset prices. This suggests that the presence and actions of HF traders may

indeed contribute to fluctuations in market volatility, rather than market efficiency. These

contrasting findings highlight the complexity of the relationship between HF trading, market

noise, and volatility, underscoring the need for further in-depth study to better understand

the dynamics at play.

However, there remains a lack of literature on the HF market-maker’s expected profit

associated with the HF market environment. This is primarily due to the innate complexity

of analyzing the relationship in the market microstructure framework. This is also because

the optimal values for HF market-making strategies and profits involve numerous market

factors as a non-linear manner. The distinguishing factors of HF trading from conventional

asset trading include correlations between buy and sell orders, autocorrelation in order ar-

rivals, short-term volatility, and order book imbalance. This study tackles the technical

challenges involved in analyzing HF market-making activities through the use of the deep

neural network (DNN) approach. We generate the required dataset using the DNN method

to investigate our research questions: (i) how changes in HF market stability and potential
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market manipulation affect the market-maker’s profitability, and (ii) what primary factors

influence the relationship between the market-maker’s optimal wealth and the HF environ-

ment. To the best of our knowledge, this aspect has not been explored in previous literature.

As a market microstructure model, we employ the limit order book model (LOB) pro-

posed by Choi et al. (2021), which is developed based on the Hawkes process including self

and mutual-exciting factors and synchronizing tendency between buy and sell order dynam-

ics. Given that optimal market-making trading strategies involve numerous variables in the

model of Choi et al. (2021), the challenge of high-dimensionality is addressed by adopting

the deep Galerkin method (DGM). This method enables us to estimate solutions for the

high-dimensional partial differential equation (PDE) by representing the unknown function

of interest through a DNN structure. The conceptual groundwork and its proof for the con-

vergence are laid out by Sirignano and Spiliopoulos (2018) and Grohs et al. (2023). The

DGM trains the network function by minimizing losses associated with the differential oper-

ators acting on the function, as well as any initial, terminal, or boundary conditions that the

solution must satisfy. The input data in DGM consists of samples randomly generated in the

domain of the PDE, referred to as batches, which are trained to conform to the PDE condi-

tions through sufficient iterations. A notable feature of this approach is its mesh-free nature,

distinguishing it from other conventional numerical methods like finite difference methods.

Many simulation studies suggest that the DGM may overcome the curse of dimensionality

more effectively than other numerical techniques (Beck et al., 2019, 2021).

This study draws three main contributions in aspects of efficiency improvement in DGM

and HF market-making management. First, one notable issue to run DGM is the high com-

putational expense required to reach a certain level of accuracy. As stated in Choi et al.

(2021), a single training under suitable hyper-parameters demends 16.9 hours, presenting a

considerable barrier to the further application. Another issue in this regard is the impos-

sibility of validation for the trained model, because the true value, namely the solution of

the PDE, is generally unknown including our problem. This renders testing efficiency for

the DGM models across various hyper-parameters infeasible. To address these issues, we

propose an indirect scheme for validation in DGM that simulates the distribution of the

value function employing the DGM-approximated optimal controls under a newly generated

data set. This approach enables for assessing the trained models from a different perspective

of accuracy along with the training loss profile. It also allows a comprehensive evaluation of

potential overfitting issues in the DGM estimation.

Next, we establish the practical relationship between batch size and the number of iter-

ations applied in DGM, which are fundamental components to run the training loss mini-

mization procedure. Our findings in this regard are as follows: (i) the number of iteration

decreases as batch size increases, and (ii) the increase in batch size demands more necessary

computing resource, despite of the trade-off between batch size and the number of itera-

tions. In other words, smaller batch necessitates further iterations to achieve a comparable

performance to that of a larger batch model. This is because it estimates less accurate

gradients, requiring more steps to reach the ultimate optimal point. However, the total
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minimum training cost rises as batch size grows, and the corresponding computing time

also does accordingly. Our findings are aligned with the prevailing results in general neu-

ral network training including Shallue et al. (2019) who empirically derive the relationship

that increasing the batch size decreases the number of required training steps proportionally.

Such relationships allow us to have an optimal DGM model selection given the conditions

available computational cost and desired accuracy level.

Lastly, we verify the relationship between the market-maker’s maximal expected wealth

and the degrees of stability and potential manipulation in the HF market using the optimally

generated data from DGM. HF market stability is assessed through the bounded condition

of the Hawkes model, which is further decomposed into multiple influencing components,

including long-term persistent trader relationships and transient noises. Additionally, HF

market manipulation focuses on spoofing behaviors. For the market stability test, we observe

that higher market instability leads to higher profits, and vice versa, but this relationship

holds true only when buy and sell orders are more synchronized or when market orders exhibit

greater self-excitement. In essence, the synchronization and self-exciting tendencies in HF

market order arrivals significantly contribute to enhancing the market-maker’s profitability.

However, in cases where market stability is influenced by other parameters, such as mutual-

excitement and mean-reversion speed factors, no significant relationship is observed.

For the HF market manipulated by spoofers, we examine how spoofing acting on limit

orders can escalate adverse impacts on the market-maker’s profit, considering both the fre-

quency and intensity of spoofing patterns. Our finding in this regard is that frequency does

indeed significantly worsen the market-maker’s profitability, whereas intensity has a limited

impact on reducing profit. This implies that frequent and coordinated spoofing behaviors,

even with smaller sizes of unintended limit orders to execute, can greatly disrupt market-

makers from performing effectively and diminish their profitability. These observations offer

valuable insights for both HF market-making traders and policymakers to monitor HF trad-

ing practices effectively.

The remainder of this paper is organised as follows. Section 2 reviews the relevant lit-

erature. Section 3 explains the LOB model by Choi et al. (2021) incorporating with the

synchronising factor and the optimal market-making strategies as a solution of the asso-

ciated PDE, and Section 4 presents the DGM procedure for estimate the PDE. Section 5

discusses a novel scheme of validation for DGM and overfitting issues through training two

representative cases. Section 6 demonstrates the relationship between batch size and the

number of iterations to seek the optimal DGM model. Section 7 presents the simulation

results for a market-maker’s wealth with respect to HF market stability using the optimal

strategies. Section 8 concludes, and supplementary figures are displayed in Appendix A.

2. Literature Review

The optimal market-maker’s problem under order dynamics has been widely studied in

the market microstructure field. Ho and Stoll (1981) discuss the optimal market-making
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policy by specifying a true price for assets on the supply and demand curves of a public

market. They derive the optimal bid and ask quotes around the true price by accounting for

the inventory effect. In this spirit, Avellaneda and Stoikov (2008) propose a market-making

model in an order book by employing a diffusion process for a mid-price and a Poisson process

for executed limit orders. For the exponential utility function, this provides an asymptotic

solution for quoting spreads and reservation prices. Rosu (2009) derives an equilibrium

transaction price between market and limit orders in terms of utility by considering the

trade-off between execution prices and waiting costs at the bounded discrete price levels.

Gueant et al. (2013) study the same problem as Avellaneda and Stoikov (2008) by adding

inventory volume constraints and then approximate the optimal control with asymptotic

limits over an infinite time horizon. Cartea et al. (2014) model the dynamics of the arrival

of market orders and resulting changes in the LOB’s shape with self-exciting and mutually

exciting Hawkes processes. Guilbaud and Pham (2013) investigate the optimal market-

making policy when an agent uses both limit, and market orders by employing a numerical

method that estimates the optimal problem. Cartea and Jaimungal (2013) study modelling

price revision and duration for HF trading activities using the hidden Markov model with

regime switching. Veraart (2010) models two types of market-making actions in foreign

exchange markets, removing, and adding liquidity with two-dimensional Brownian motions.

Guo et al. (2017) employ a correlated random walk for the best bid/ask prices and solve the

optimal placement problem with a reflection principle.

Since the drastic emergence of HF traders, there have been debates and contraversies

of the roles played by HF trading, but large empirical studies support the views that HF

traders enhance market quality and efficiency. Hendershott et al. (2011) find that HF traders

improve liquidity and enhance the informativeness of quotes, using the automation of quote

dissemination as an exogenous change in market structure. They find that for large stocks

in particular, HF traders narrow spreads, reduce adverse selection, and reduce trade-related

price discovery. Hasbrouck and Saar (2013) show that increased HF traders’ activity is

associated with lower posted and effective spreads, increased depth, and lower short-term

volatility. Brogaard et al. (2014) investigate benevolent roles for HF traders, as they provide

liquidity, yielding to increase price discovery. Chaboud et al. (2014) estimate that HF trading

is responsible for 60 to 80% of price discovery procedure mainly through limit orders. Biais

et al. (2016) find that HF traders provide liquidity by leaving limit orders in the LOB, thus

helping the market absorb shocks. Brogaard et al. (2019) find that HF traders are major

contributors of limit orders and thus influence price discovery significantly. However, their

behavior and contribution decrease with higher market volatility. This suggests that HF

traders’ informational advantage is partly due to their faster reactions to public information.

Empirical studies on market-maker profit opportunities have been largely focused on the

analysis in terms of trading and regulatory systems and operations. Transaction fees and

trading duration are a substantial part of HF trader’s profit. Menkveld (2013) estimate that

positions lasting less than five seconds make a profit, whereas ones lasting longer than that

generally lose money. Baron et al. (2019) find that differences in relative latency account for
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large differences in HF trading firms’ performance. They also find the stronger performance

for HF market-makers is substantially linked with relatively higher speed. Menkveld and

Zoican (2017) investigate that faster exchanges may actually harm liquidity by intensifying

competition among HF market-makers and speculators, whereas they allows the HF market-

maker to update one’s quotes more quickly and reduce one’s payoff risk.

The DGM, an innovative numerical method for solving PDEs, is theoretically grounded

from the universal approximation theorem (Hornik, 1991) which states that DNNs can es-

timate a wide variety of arbitrarily continuous functions on compact sets with appropriate

weights. Since being introduced by Sirignano and Spiliopoulos (2018) for DGM, a substantial

body of literature has provided rigorous mathematical proofs regarding its approximation

capabilities and their extensions. For the convergence, Grohs et al. (2023), Jiao et al. (2023),

Hutzenthaler et al. (2020) provide convergence and tractability results with dimension inde-

pendent convergence rates and error constants depending polynomially on the input dimen-

sion. For the extension, Chen et al. (2021) propose the DGM to solve hyperbolic PDEs with

discontinuous solutions and random uncertainties. Al-Aradi et al. (2022) extend the DGM

to solve for the value function and the optimal control simultaneously by characterizing both

as DNN, for the case where the PDE has a constraint. Beck et al. (2022) recently overview

all the literature of DGM.

3. Limit Order Book Model and Optimization Problem

We define a filtered probability space (Ω,F , {Ft}t≥0,P) satisfying the usual conditions.

Assume that all stochastic processes in this paper are defined on (Ω,F , {Ft}t≥0,P). Let St
be the mid-price of the asset at time t with the dynamics

dSt = σStdWt,

where σ is a positive constant and W is a standard Brownian motion.

Consider a market-maker who continuously posts a limit buy order and sell order of the

asset with depth δ−t , δ
+
t ≥ 0, respectively. In other words, the market-maker posts a buy

limit order at a price of St−δ−t , and a sell limit order at a price of St+δ
+
t . The market-maker

provides liquidity to the market and earns profits from the bid-ask spread.

We assume that transactions only occur when market orders arrive and match with

pending limit orders posted by the market-maker. Let the counting processes M+
t and M−

t

with intensities λ+
t and λ−t denote the arrival of other participants’ buy and sell market orders,

respectively. We denote the market-maker’s filled buy and sell limit orders by the counting

processes N−t and N+
t , respectively. As a measure of the chance with which the market-

maker’s limit buy and sell orders are executed, we consider the fill probabilities h(δ±t , c
±
t )

at time t for limit orders placed δ±t away from St. The process ct can be interpreted as

parameters directly determining the shape of the limit orders.
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From this setup, the processes N±t can be regarded as the pathwise stochastic integral

with respect to M±
t :

N−t =

∫ t

0

I−s dM−
s and N+

t =

∫ t

0

I+
s dM+

s . (1)

Here, I±t are defined by

I−t =

{
0 if M−

t −M−
t− = 0

ε−t otherwise
and I+

t =

{
0 if M+

t −M+
t− = 0

ε+t otherwise
, (2)

where ε±t are Bernoulli random variables with probability h(δ±t−, c
±
t−), respectively. We assume

that market order volumes are independent and identically distributed and exponentially

distributed, and the shape of the piled limit orders is flat. Given that market orders arrive,

the probability that a limit order at price level St ± δ±t is executed is equal to h(δ±t−, c
±
t−) =

e−δ
±
t c

±
t .

The market-maker’s execution processes have two driving factors, how often market or-

ders are walking into the LOB λt = (λ−t , λ
+
t )t≥0 and how deep is the volume depth for the

current limit order ct = (c−t , c
+
t ). We employ a synchronising order book model (Choi et al.,

2021). In this model, the market orders arrive at the intensity λt given as

dλ−t = β(θ− − λ−t + κλ+
t )dt+ ηdM−

t + νdM+
t ,

dλ+
t = β(θ+ − λ+

t + κλ−t )dt+ ηdM+
t + νdM−

t

(3)

with constants β, θ± > 0 and η, ν, κ ≥ 0, and the limit orders have the depth ct given as

dc−t = βc(θ
−
c − c−t + κcc

+
t )dt+ ηcdM

−
t + νcdM

+
t ,

dc+
t = βc(θ

+
c − c+

t + κcc
−
t )dt+ ηcdM

+
t + νcdM

−
t

(4)

with constants βc, θ
±
c > 0 and ηc, νc, κc ≥ 0. This model features that the market order

arrival intensity jumps up immediately after any market order arrival, where the parameters

η and ν govern how responsive the self-exciting and mutually-exciting components of the

intensity are due to additional market orders, respectively. Their states revert to the mean-

reversion level θ∓ + κλ±t with speed β since the exciting impacts from market order arrivals

are temporary. The depth process of the limit order jumps up with size ηc, νc when market

orders arrive, which has a one-way effect, unlike the market order intensities. The other

components play the same role with the ones in λt, where θ±c are the long-run mean level,

κc is the synchronising factor, and βc is the mean-reverting speed.

Remark 1. (i) To examine the conditions that guarantee the intensity processes for market

orders be stable, we define the mean future rate, m±t (u) = E[λ±u |Ft], for u ≥ t. For the

processes λ±t to be stable, m±t must remain bounded as a function of u for each t. The mean

future rates m±t (u) [
m−t (u)

m+
t (u)

]
= e−D(u−t)

([
λ−t
λ+
t

]
−D−1π

)
+D−1π (5)

7



are bounded for all u ≥ t if and only if (1− κ)β > η + ν. Furthermore,

lim
u→∞

m±t (u) = D−1π, where D =

[
β − η −κβ − ν
−κβ − ν β − η

]
and π =

[
βθ−

βθ+

]
.

(ii) We obtain n±t (u) = E[c±u |Ft] by solving a system of ODEs derived by taking the integral,

conditional expectation, and derivative in Eq.(4). The mean future level n±t (u) is given by,

for all u ≥ t,[
n−t (u)

n+
t (u)

]
= D−1

c πc + e−Dc(u−t)
(∫ u

t

eDc(s−t)G(s)ds+

[
c−t
c+
t

]
−D−1

c πc

)
, (6)

where

Dc =

[
βc −κcβc
−κcβc βc

]
, πc =

[
βcθ

+
c

βcθ
−
c

]
, and G(s) = ηc

[
m−t (s)

m+
t (s)

]
+ νc

[
m+
t (s)

m−t (s)

]
(7)

with m±t (s) in Eq.(5). Eq.(6) shows the mean long future rate yields

lim
u→∞

n±t (u) = D−1
c πc,

which are only affected by the synchronizing factor κc and the mean-reversion levels θ±c . The

impact from the exciting factors µ, ν by market order changes ultimately disappears as time

goes, meaning that it is only temporary and not affecting its fundamental level of the limit

orders’s depths.

From their setup, the market-maker’s cash process Xt satisfies

dXt = (St + δ+
t−)dN+

t − (St − δ−t−)dN−t ,

which accounts for the cash increase when a sell limit order is lifted by a buy market order,

and the cash decrease when a buy limit order is hit by a sell market order. Accordingly, the

market-maker’s inventory process qt is given as

dqt = dN−t − dN+
t .

A market-maker seeks the strategy (δ−t , δ
+
t )0≤t≤T that maximises the cash value at the

terminal date T . At time T , the market-maker liquidates the terminal inventory qT using

market orders at a price lower than the mid-price to account for liquidity costs as well as

the market orders walking the LOB. The performance of the market-maker achieved during

[t, T ] is given by

ΦT = XT + qT (ST − φqT )− ψ
∫ T

t

q2
udu, (8)

where φ ≥ 0 is a cost attributed to liquidity as well as the impact of the market order walking

the LOB, and ψ ≥ 0 is the running inventory penalty parameter.
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The value function of the market-maker is given by

V (t, x, s, q,λ, c) = max
(δ+u ,δ

−
u )t≤u≤T

E
(

ΦT

∣∣∣∣Xt = x, St = s, qt = q,λt = λ, ct = c

)
, (9)

where φ, ψ ≥ 0, and the initial states of the cash amount x, the stock price s, the inventory

amount q, and the intensity levels λ = (λ−, λ+), c = (c−, c+) are given. From the HJB

derived from Eq.(8), the ansatz solution can be obtained

V (t, x, s, q,λ, c) = x+ qs+ g(t, q,λ, c),

and the optimal controls can be derived in Remark 2.

Remark 2. (Optimal market-making strategy) The optimal controls δ±t are derived as

(δ−t )∗ =
1− c−(∆−q,λ,cg −∆−λ,cg)

c−
1{c−(∆−

q,λ,cg−∆−
λ,cg)<1},

(δ+
t )∗ =

1− c+(∆+
q,λ,cg −∆+

λ,cg)

c+
1{c+(∆+

q,λ,cg−∆+
λ,cg)<1},

(10)

where g satisfies the following PDE

∂g

∂t
+ β(θ− − λ− + κλ+)

∂g

∂λ−
+ β(θ+ − λ+ + κλ−)

∂g

∂λ+

+ βc(θ
−
c − c− + κcc

+)
∂g

∂c−
+ βc(θ

+
c − c+ + κcc

−)
∂g

∂c+

+ λ−(∆−q,λ,cg − g)1{c−(∆−
q,λ,cg−∆−

λ,cg)≥1} + λ+(∆+
q,λ,cg − g)1{c+(∆+

q,λ,cg−∆+
λ,cg)≥1}

+ λ−

(
ec

−(∆−
q,λ,cg−∆−

λ,cg)

ec−
+ ∆−λ,cg − g

)
1{c−(∆−

q,λ,cg−∆−
λ,cg)<1}

+ λ+

(
ec

+(∆+
q,λ,cg−∆+

λ,cg)

ec+
+ ∆+

λ,cg − g

)
1{c+(∆+

q,λ,cg−∆+
λ,cg)<1} − ψq

2 = 0

(11)

with the terminal condition g(T, q,λ, c) = −φq2. and the shift operators ∆±q,λ,c and ∆±λ,c are

defined as follows:

∆−q,λ,cg(t, q,λ, c) = g(t, q + 1,λ+ (η, ν), c+ (ηc, νc)),

∆+
q,λ,cg(t, q,λ, c) = g(t, q − 1,λ+ (ν, η), c+ (νc, ηc)),

∆−λ,cg(t, q,λ, c) = g(t, q,λ+ (η, ν), c+ (ηc, νc)),

∆+
λ,cg(t, q,λ, c) = g(t, q,λ+ (ν, η), c+ (νc, ηc)).

4. Deep Neural Network Methods

This section discusses the DGM to approximate for a solution of the HJB equation

derived in Section 3, and also shows the optimizor to run DGM. The DGM trains batches of
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randomly sampled time and space points from the domain of the PDE as input values and

produce a candidate solution of the PDE through a smooth neural networks with activation

function repeatedly. The training procedure aims to find the best DNN parameters that

minimize a loss function, which indicates how close the DNN architecture is to satisfying the

PDE’s given conditions.

We choose a domain of the PDE such that D = (−∞,∞) × [0,∞)4 ⊂ R5 and DT =

[0, T ) × D. We assume that there exists a unique solution u(t, q,λ, c) ∈ C1(DT ) to the

following PDE:

∂u

∂t
(t, q,λ, c) + Lu(t, q,λ, c) = 0, for (t, q,λ, c) ∈ DT

u(T, q,λ, c) = −φq2, for (q,λ, c) ∈ D,
(12)

where L is a nonlinear PDE operator with a one time variable and five state variables defined

in Eq.(11). Suppose that g(t, q,λ, c) is a solution of the PDE (11). We can set

u(t, q,λ, c) = g(t, q,λ, c), for (t, q,λ, c) ∈ DT ,

which can be approximated by a DNN function f(·,Θ), where Θ is a set of the DNN param-

eters. As an architectures of f , we employ a fully-connected feedforward network

h1 = tanh(W0x+ b0)

hl+1 = tanh(Wlhl + bl), l = 1, · · · , L (13)

f(x; Θ) = WL+1hL+1 + bL+1,

with hl ∈ Rn and L hidden layers having n hidden units in each hidden layer, where hy-

perbolic tangent is chosen as the activation function2, and Θ consists of weight matrices

W0 ∈ Rn×6, Wl ∈ Rn×n,WL+1 ∈ R1×n and bias vectors b0 ∈ Rn, bl ∈ Rn, bL+1 ∈ R1.

To proceed DNN training, we set a compact domain D̃ = [−N1, N1] × [n2, N2]2 ×
[n3, N3]2 ⊂ D for any large positive numbers N1, N2, N3 and small positive numbers n2, n3,

and let D̃T = [0, T )× D̃. In the reduced domain, the following loss function is employed:

L(f ; Θ) =

∥∥∥∥∂f∂t (t, q,λ, c; Θ) + Lf(t, q,λ, c; Θ)

∥∥∥∥2

D̃T ,µ1
+

∥∥∥∥f(T, q,λ, c; Θ) + φq2

∥∥∥∥2

D̃,µ2
, (14)

where µ1 and µ2 are probability measures of D̃T and D̃, respectively, which are absolutely

continuous with respect to the Lebesgue measure.

2From the tests of various types of architectures including the classic/modified LSTM, monotonic non-

linear transformation, drop-out layers, skip connections models and different activation functions, we chose

the best practice.
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Training is conducted by the stochastic gradient descent (SGD) method based on the

mean squared error L̃(f(x); Θ)

L̃(f(x); Θ) =
1

m

m∑
i=1

{(
∂f

∂t
(ti, qi,λi, ci; Θ) + Lf(ti, qi,λi, ci; Θ)

)2

+
(
f(T, q̃i, λ̃i, c̃i; Θ) + φq̃2

i

)2
}
,

(15)

where x is the input variables randomly sampled with a batch size m. The SGD employs a

random estimator L̃(f(x); Θ) that is unbiased of the original loss function, i.e., L(f ; Θ) =

Ex[L̃(f(x); Θ)], instead of obtaining the true loss value on the whole input domains. The

mechanism of running the SGD method is as follows: The DNN parameters Θ are updated

in the opposite direction of the gradient of L̃(f(x); Θ) such that

Θ← Θ− `∇ΘL̃(f(x); Θ)

with a given learning rate ` and the mean squared error (15) evaluated by averaging out

the values computed on m sets of input samples randomly generated from the domains D̃T
and D̃ under the probability measures µ1 and µ2, respectively. Whenever every step is

iterated, different m sets of randomly generated samples are used to compute the gradient

of L̃(f(x); Θ), and as iteration goes on, ` can be chosen differently (commonly reducing).

5. Validation and Overfitting

The DNN training in the DGM framework has two features distinct with conventional

DNN training. First, DGM does not have a fixed and finite sample size, unlike the con-

ventional DNN training scenarios, because a distinct random sample is freshly drawn from

the input space for each iteration. Instead, the sample size in DGM is determined by the

product of the total number of iterations used in training and the batch size. Therefore, the

overall sample size varies based on the selection of hyper-parameters, particularly batch size,

learning rate, and the resultant total number of training iterations. Second, DGM does not

employ the concept of an epoch, which is traditionally defined as one complete pass through

the entire training dataset. Instead, DGM expands the training dataset with each iteration.

This continuous expansion alters the typical training dynamics and necessitates a different

approach to model validation and assessment.

In this context, this section outlines these unique characteristics and their implications

for the training process and proposes the methods to address this distinction.

5.1. Indirect Validation with Simulation

Direct computation of validation of the trained model is infeasible for the DGM due to

the unique nature of our dataset, as described above. Additionally, the true solution of the

PDE is unknown except at the terminal trading time, which is provided as boundary and
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terminal conditions. This renders it impossible to validate the trained model across nearly

the entire domain. In typical scenarios with a fixed training dataset, it is standard practice

to divide the dataset into proportions such as 80/20 or 70/30 for training and validation,

respectively. However, the DGM dataset comprises randomly generated batches of samples

produced by the same random number generator, which prevents this approach.

To address this challenge, we propose an indirect validation method. Post-training, we

validate our models by conducting trading simulations and comparing the profit and loss

(PnL) performance of different models, by generating samples of the terminal wealth

PT = XT + qT (ST − φqT ). (16)

During these simulations, the data set is not randomly generated but rather “simulated”

according to the modeled dynamics of each variable. This proposed indirect measure involves

applying the trained DNN structure to a new dataset and simulating the distribution of the

final PnL using the estimated optimal strategies δ∗t .

Although the true values, that is the solution of the PDE, are unknown except at the

terminal trading time, this method provides a practical sense to verify the model. If the

trained DNN is close to the true solution, the model should be able to produce the high-

est terminal wealth during trading on average across various market scenarios. Thus, this

simulation-based validation, as proposed, allows us to assess the model’s performance effec-

tively, ensuring that it performs well under different market conditions.

5.2. Overfitting

The unique nature of our training problem implies that overfitting, a major concern in

neural network training, may not apply to DGM problems in the same manner as it does in

typical scenarios. In conventional settings, one would expect the probability of overfitting

to increase with the number of epochs because the model tends to learn the training data

too well capturing noise and outliers, which can lead to poor generalization to unseen data.

However, this may not be entirely applicable to the DGM case since each iteration explores

a new subset of points within the input domain.

In the SGD optimization, utilizing a larger batch size and a smaller learning rate, coupled

with a significant number of iterations, can result in a model that is closer to the true mini-

mum. Theoretically, L̃(f(x); Θ), which serves as a sample mean estimator for the true value

L(f ; Θ), becomes more accurate as the batch size increases. Additionally, as the convergence

of DGM shown in the literature (Grohs et al., 2023; Jiao et al., 2023; Hutzenthaler et al.,

2020) and for our market-making problem (Theorem 3, Appendix A.3 in Choi et al., 2021),

an infinite number of iterations should theoretically lead the model to the true minimum. A

small learning rate ensures that the DNN parameters, including weights and biases, converge

to their optimal values slowly but surely.

However, when considering the computational cost and its effectiveness, it is crucial to

find a balance. While a large batch size and small learning rate can improve the model’s

accuracy, the practical constraints of computational resources and time must be taken into
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account. Therefore, we need to determine a practically feasible configuration for the batch

size m, learning rate `, and the number of iterations N to ensure computational efficiency

and effectiveness.

5.3. Case Study for Overfitting

We investigate overfitting risk that can apply to the DGM problem by focusing on the

role of the learning rate and batch size through two case studies. For the test, we select

the DNN model of L = 3 hidden layers and n = 900 hidden nodes, which is tested as the

best performed model than other choices in Choi et al. (2021). The required market model

parameters are chosen as β = 100, θ− = 0.5, θ+ = 0.4, κ = 0.2, η = 20, ν = 15 (for the

intensity processes λ in Eq.(3)), βc = 40, θ±c = 0.3, κc = 0.1, ηc = 8, νc = 5 (for the depth

processes c in Eq.(4)), φ = 0.1 and ψ = 0.01 (penalty on the inventory in Eq.(8)). Our

computing is performed on a Windows 10 PC with an AMD Ryzen Threadripper 1950X

CPU, a 3.40 GHz 16-core processor, 64 GB RAM, and an NVIDIA Titan V GPU. Testing

is conducted using TensorFlow in Python, and the DNN parameters are updated using the

Adam optimisation algorithm, which is a momentum-based stochastic optimisation method

(Kingma and Ba, 2015). The DNN parameters are initialised using the Xavier initialisation.

For PnL validation, we employ a customized version of the thinning algorithm (Ogata,

1978) to generate the required sample paths including market order intensity λ± and the

corresponding market order process M±
t , as well as the LOB depth c±t . Samples of N±t

are then filtered from M±
t using a Bernoulli variable generator based on the fill probability

h(δ±t , c
±
t ) = e−δ

±
t c

±
t with δ±t estimated under different models. The stock mid-price path St,

the market-maker’s cash process Xt, and the inventory process qt are generated accordingly.

Starting with an initial wealth of zero, we track the market-maker’s cash process until the

accumulated inter-arrival time of either N+
t or N−t reaches the terminal trading time T = 300

by executing market-making trades with limit orders, guided by the fill probabilities of posted

limit buy and sell orders St + δ+
t− and St − δ−t−, respectively. This procedure is repeated K

times to obtain the terminal PnL values.

Given under the computing configuration and the parameter conditions, we consider the

DGM model trained with two cases of learning rate, 1× 10−5 and 5× 10−5 with batch size

25,000.

5.3.1. Case 1: learning rate 1× 10−5

We train the model of a batch size 25,000 and the initial learning rate 1 × 10−5 and

progressively reduce it over training iterations3. We train this model for a total of 600,000

iterations while saving checkpoints at various stages throughout the training process4. We

3The Adam optimizer adjusts the optimal learning rate inside the algorithm yet, the initial value needs

to be input.
4The learning rate is set to 1×10−5 for 0 ≤ N ≤ 200, 000; 5×10−6 for 200, 000 ≤ N ≤ 300, 000; 1×10−6

for 300, 000 ≤ N ≤ 400, 000; and 5× 10−7 for 400, 000 ≤ N ≤ 600, 000.
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then simulate the market-maker’s wealth process using the DGM-approximated optimal

strategies derived with different number of iterations.

Figure 1 presents the training loss over various training steps, highlighting the model’s

convergence behavior. The training loss exhibits smooth and consistent convergence through-

out the training process, continuing to decrease even after 600,000 iterations. The terminal

training loss was 90.83 for the model trained over 600,000 iterations, which took 33.3 hours,

and the loss was still on a decreasing trend when training was stopped. Additionally, the

model appears to be progressively approximating the terminal condition with greater accu-

racy. This can be seen in Figure 2 which illustrates the terminal condition of g alongside

its DNN-approximated solution f , as well as their absolute difference at different stages of

training5. The absolute error for the model trained over 600,000 iterations was minimal,

remaining below 2 across most of the inventory range.

Table 1 presents the number of paths with positive (profit) and negative (loss) terminal

PnL out of 1,000 simulations for models at various stages of training, along with the corre-

sponding final training loss. Additionally, it includes the mean and standard deviation of

the training loss over the last 1,000 iterations of each specific training stage.

Despite most models appearing well-trained in terms of training loss and terminal con-

dition approximation, they still yield some negative terminal losses in some of the 1000 PnL

simulations. Notably, these negative terminal losses are significantly larger in magnitude

than the profits. Even in the case of a well-trained DNN model with generally low error lev-

els, both overall and in the terminal condition – for instance, at 480,000 iterations, achieving

a final loss of 131.34 – we observe 13 extreme negative losses (biggest of which are -598, -509,

and -352). These outcomes are difficult to regard as instances of optimal wealth. This issue

can be better visualized in Figure A.9, where terminal PnL is plotted over simulations for

models at different stages of training. Moreover, as the number of training steps increases,

the number of negative PnL cases gradually diminishes, indicating an improvement in model

performance. Given sufficient iterations, the model is capable of converging to the global

minimum, even with a large batch size, a small learning rate, and an extensive number of

iterations.

5.3.2. Case 2: learning rate 5× 10−5

We train the model with learning rate 5 × 10−5 without reseting the magnitude during

training, under that the other conditions are the same with Case 1. Training was stopped at

200,000 iterations, since the training loss no longer decreased, while saving checkpoint at the

stage of 120,000th iteration. The terminal loss is 185.04 and the corresponding computing

time is 4.44 hours.

Surprisingly, we observe a significant improvement in the model’s PnL performance even

though computing cost is largely reduced. Table 2 displays the results of this case, presented

5100,000 terminal f values (for each q) are computed from 100,000 random samples of λ± and c±, and

the average of the computed terminal f values is taken.
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Table 1: Results of the model with learning rate 1× 10−5 progressively decreasing: The final training loss,

and the mean (Mean) and standard deviation (Std) of the loss over the last 1000 iterations for the employed

DNN model at various training steps, and the corresponding PnL validation resulting in the number of

positive and negative terminal PnL for 1000 samples.

Iterations
Training PnL Validation

Batch Size Learning Rate Training Loss Mean Std # Profits # Losses

120,000 25,000 1× 10−5 275.31 307.93 23.44 976 23

160,000 25,000 1× 10−5 292.97 265.12 17.95 975 24

200,000 25,000 1× 10−5 243.54 238.32 14.11 981 18

300,000 25,000 5× 10−6 213.85 194.63 10.00 981 18

400,000 25,000 1× 10−6 157.32 166.94 9.9 979 20

480,000 25,000 5× 10−7 131.34 141.88 13.4 986 13

520,000 25,000 5× 10−7 174.52 128.88 14.84 989 10

560,000 25,000 5× 10−7 103.85 121.05 17.24 998 1

600,000 25,000 5× 10−7 90.83 113.00 24.45 999 0

in a similar manner to Table 1. We can see that even after 100,000 iterations, no negative

PnL cases were observed, highlighting the robustness and efficiency of the model under the

revised learning rate.

Table 2: Results of the model with learning rate 5×10−5: The final training loss, and the mean (Mean) and

standard deviation (Std) of the loss over the last 1000 iterations for the employed DNN model at various

training steps, and the corresponding PnL validation resulting in the number of positive and negative terminal

PnL for 1000 samples.

Iterations
Training PnL Validation

Batch Size Learning Rate Training Loss Mean Std # Profits # Losses

100,000 25,000 5× 10−5 246.49 213.65 24.96 1000 0

150,000 25,000 5× 10−5 236.85 232.00 84.93 1000 0

5.4. Overfitting in DGM

The observations in Section 5.3 carry significant implications for training in DGM. It is

characterized that some models trained in Case 1 exhibiting overfitting to the new dataset,

which it had not encountered during training. Despite most models in Case 1 demonstrating

favorable training loss and terminal condition error metrics over ones in Case 2, it produced

highly anomalous results that would lead a significant operational risk (poorly executed

algorithms) in real trading places. Overfitting may stem from employing excessively large

input data and a unnecessarily small learning rate.

Increasing the batch size tends to decrease the variability in computed gradients by av-

eraging out losses. While this can reduce noise in the optimization process, it also limits
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Figure 1: Training loss over iterations for different configurations. Each subplot shows the training loss as

a function of the number of iterations for a fixed batch size of 25,000 with varying learning rates: 1× 10−5

(top left), 5× 10−6 (top right), 1× 10−6 (bottom left), and 5× 10−7 (bottom right).

exploration of the parameter space, potentially trapping the loss in sharp minima6, thus in-

creasing the risk of overfitting. Additionally, a small learning rate exacerbates this situation,

as larger samples smooth out noise in gradient, making it more probable for optimization to

remain in sharp minima regions of the loss landscape.

Even if the training loss continues to decrease, but if it is exploring in sharp mimima

area, generalization performance of the model may be degraded on unseen data as it becomes

increasingly specialized to the training set. To escape a sharp minima region, a large batch

and small step size model needs more iterations, meaning that largely expensive compu-

tational costs are required to obtain a reliable model, where the cost was at least 600,000

iterations in Case 1.

The issue of model generalization is a crucial aspect in training DNNs, first introduced by

Hochreiter and Schmidhuber (1997). They proposed the concept of a flat minimum in the loss

6Sharp minima are regions where the loss function has steep gradients. Models trained at sharp minima

may have lower training error, but they are more susceptible to overfitting because small changes in the

parameters can lead to large changes in the loss.
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Figure 2: Comparison of the true terminal condition g and its approximate solution f at various training

iterations across the inventory level with the number of iterations 200,000 (top left), 300,000 (top right),

400,000 (bottom left), and 600,000 (bottom right). Each subplot has the true terminal condition and the

approximate solution in the left column, and their absolute error (blue) in the right column.

function and developed an algorithm to discover neural networks with low complexity and

high generalization capacity. Numerous recent studies focus on enhancing a neural network’s

generalization performance by aiming for a flat minimum in optimizers (Cha et al., 2021;

Kaddour et al., 2022; Zhang et al., 2023). Conversely, small batch sizes introduce more

noise into the optimization process, which can help the model escape sharp minima and find

flatter regions of the loss landscape7, which has lower sensitivity of the loss function to a little

change in weights. Small batch sizes enable the optimization algorithm to explore a wider

range of parameter configurations, potentially leading to better generalization performance.

The overfitting in a large batch and small learning rate model may not be a concern

in DGM context because it has the potential to overcome sharp minima by increasing the

number of iterations. However, this strategy needs a larger training set for the convergence,

leading to diminishing benefits as batch size increases8. Taking such a long route is compu-

tationally intensive; thus, it may be practically infeasible. Moreover, early stopping training

7Flat minima are regions in the optimization landscape where the loss function is relatively flat. Models

trained to a flat minimum often generalize better because they are less sensitive to small perturbations in

the input data. Flat minima typically correspond to regions where the model’s parameters have similar

performance, indicating robustness to variations in the training data
8This observation is particularly interesting because, in typical machine learning settings, the likelihood

of overfitting tends to increase with additional training steps, often resulting in poor generalization and

suboptimal validation results.
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may lead to overfitting, as evidenced by validation through PnL simulation. Thus, careful

calibration of batch size and learning rate is essential to balance computational efficiency

and model performance. This issue is discussed in detail in the next section.

6. Optimal Model Selection

This section focuses on identifying the optimal DGM model by analyzing training loss,

computational efficiency, and validation performance. Through a series of experiments, we

assess the effects of different batch sizes and training step configurations on model perfor-

mance. By conducting PnL simulations, we validate our findings and highlight the implica-

tions of batch size and training duration on overfitting and model robustness. The insights

derived from these experiments offer valuable guidance for selecting hyper-parameters that

balance computational cost and predictive accuracy in high-dimensional optimization prob-

lems.

In general neural network training, Shallue et al. (2019) derive empirically the relationship

between batch size and the number of iterations required to reach a goal of out-of-sample

error, finding that increasing the batch size decreases the number of required training steps

proportionally. However, there are no further benefit for large increasing the batch size does

not reduce the number of training steps. Smith (2018); McCandlish et al. (2018) empirically

illustrate the trade-off between time and compute resources spent to train a model to a given

level of performance. In the tests, our focus lies in investigating a particular relationship

between MESS and batch size. This correlation can show the degree of a trade-off between

improved gradient accuracy and the increased likelihood of encountering sharp minima with

respect to the stochasticity in loss.

6.1. Measurement of Compute Cost for DGM

We measure a minumum computing cost required for a model to achieve a reasonablly

small loss but to be robust for PnL performance. For a given batch size, we define minimum

effective iterations (MEI) as the number of iterations required to reduce the training loss

below a threshold level and maintain it under this threshold for 1000 consecutive iterations

for a given batch size. Furthermore, we define minimum effective sample size (MESS) as the

product of MEI and the given batch size,

MESS = Batch Size×MEI. (17)

This represents the minimum size of computing costs that is required that the estimated

solution of the PDE has reliable and general performance (not to overfitting with good

generalization).

We conduct the test of estimating MEI and MESS with various size of batch and the

number of iterations setting a loss threshold level of 500. The batch size is chosen as 200,

400, 600, 800, 1000, 3000, 5000, 10000, 15000, 20000, and 25000. For learning rate, 5× 10−5

is chosen for all batch sizes except for the batch size of 400 which uses 1×10−5. The training
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cases are examined with several performance metrics including terminal loss, the mean and

the standard deviation of the loss over the last 1,000 iterations, the absolute error at terminal

time, and the PnL performance.

After estimating MEI for each batch case with the base learning rate, we continue train-

ing for each model beyond the MEI to ensure that the identified MEI results in robust

PnL performance. This is to assess whether models reaching the MES perform reasonably

well and if further training beyond the MES can lead to additional enhancements in the

aforementioned criteria. We also adjust the learning rate to investigate the potential ben-

efits of refining the model with smaller learning rates after reaching MEI. Each training

configurations are defined as follows:

• MEI: Base estimate for each batch size.

• Continued = MEI + 50,000: Given that MEI varies for each model depending on

the batch size, each case is trained for additional 50 thousand iterations beyond the

respective MEI.

• Extended = Total 200,000 iterations or more: Batch sizes 400 and 600 are trained for

500 thousand iterations; batch sizes 800 and 1000 are for 300 thousand; and the other

cases are for 200 thousand iterations in total.

• Refined = MEI + 50,000 with learning rate reducing: Additional 50,000 iterations from

MEI are conducted with progressively decreasing learning rates. The learning rate is

reduced five times at every 10,000 iterations post-MEI.

Each model is saved at the point of reaching the MEI, continued, extended, and refined cases.

This comprehensive analysis allows us to ascertain whether extending training beyond MEI

at the same learning rate or employing a strategy of progressively decreasing learning rates

contributes to improved model performance and robustness.

6.2. Test Results: Training Loss

Figure 3 depicts the training loss over MEI, continued, and extended numbers of itera-

tions, while Figure 4 illustrates the training loss under the refined case. Table 3 summarizes

the statistics of the training loss, mainly the mean and standard deviation of the last 1000

losses under MEI, continued, extended, and refined number of iterations. One clear ob-

servation is that any of the continued, extended, or refined cases do not add significant

improvements over MEI in terms of the mean and variance of training loss.

It is worth noting a feature regarding sudden spikes in the loss value within these curves,

especially before reaching MEI. These spikes result from the Adam optimizer, which adjusts

the effective learning rate based on the first and second moments of the gradients. During

the initial training phase, gradients are typically very large, especially with large batch sizes,

making it easier to reduce the loss. Consequently, Adam makes substantial updates, leading

to sudden spikes when encountering outlier samples (Kingma and Ba, 2015).
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Figure 3: Training loss over MEI and continued upto extended iterations. The vertical red line denotes the

MEI, and the blue line marks the continued iterations.

Additionally, the frequency of these spikes increases as batch sizes grow larger. Bigger

batches result in more stable gradient estimates (i.e., smaller variance), prompting Adam

to take larger, more confident steps. Conversely, smaller batches result in higher gradient

variance relative to the mean, leading Adam to take smaller steps and causing fewer spikes.

As training progresses, spikes become less frequent. This occurs because, in the regions that

gradients are small of the loss landscape, the gradients’ magnitude (both mean and variance)

is smaller, causing Adam to take very small, careful steps. Figures A.10, A.11, A.12, and

A.13 in Appendix A provide plots of the last 1000 training losses under MEI, continued,

extended, and refined configurations, respectively, for further reference.

6.3. Test Results: MEI, MESS, and Computing Cost

Table 4 presents the MEI, MESS, and corresponding computing time required to train

the models up to MEI. We note that batch size 200 results in that an appropriate number

of training for the loss thereshold 500 is not attained even for 600 thousand iterations and
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Figure 4: Training loss over 50,000 more iterations after MEI (Refined case). The vertical red line denotes

MEI for each configuration. Training loss after MEI corresponds to refined loss at progressively smaller

learning rates.

proper learning rate adjustment. The results from batch size 400 are visually illustrated in

Figures 5 and 6.

We observe that as batch size increases, MEI tends to decrease, indicating a trade-off

between MEI and batch size in DGM training. Regression analysis further reveals this

negative relationship, estimated to follow a power function of kx−0.41 with a coefficient of

determination R2 = 0.83. This trend occurs because larger batch sizes yield more accurate

gradient estimates, facilitating faster convergence in terms of training steps. In other words,

fewer steps are needed to reach the loss threshold level. It is known that the pattern of

diminishing MEI with increasing batch size is a common observation in machine learning

settings (Shallue et al., 2019). However, after a batch size of 3000, the rate of decline in MEI

notably levels is reduced, indicating that computational costs do not diminish from further

increment in batch size.

On the other hand, MESS and computing time display a rising trend, except for batch

sizes less than 1000, where there is a slight decline, resulting in a J-shaped curve. The
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Table 3: Summary statistics of the last 1000 training losses for different batch sizes with four iteration

conditions – the MEI, continued, extended, and refined cases.

Batch
MEI Continued Extended Refined

Mean Std Iterations Mean Std Iterations Mean Std Iterations Mean Std Iterations

400 358.7 36.7 399,356 321.6 31.9 449,356 306.1 33.2 500,000 321.6 31.3 449,356

600 310.4 37.00 355,270 341.0 73.0 405,270 321.4 50.0 500,000 304.8 39.8 405,270

800 298.5 37.9 200,400 334.7 120.7 250,400 346.2 162.6 300,000 309.1 43.0 250,400

1,000 330.9 43.7 146,206 322.5 56.2 196,206 289.4 63.8 300,000 318.2 123.3 196,206

3,000 323.2 37.8 72,589 285.3 48.2 122,589 273.6 119.7 200,000 281.3 46.6 122,589

5,000 304.4 35.5 71,081 252.6 23.5 121,081 236.3 31.2 200,000 253.5 28.3 121,081

10,000 291.6 33.9 72,434 244.0 34.8 122,434 232.0 18.0 200,000 244.9 31.4 122,434

15,000 283.9 30.7 65,590 224.9 22.1 115,590 229.9 40.4 200,000 223.8 22.4 115,590

20,000 274.1 35.2 53,746 219.1 23.8 103,746 226.1 60.7 200,000 218.3 25.6 103,746

25,000 260.1 33.4 58,431 211.8 26.0 108,431 226.4 53.1 200,000 212.9 27.3 108,431

positive relationship between MESS and batch size is described by a power function of kx0.59

with R2 = 0.91, implying that increasing batch size necessitates more computing resources,

particularly for batch sizes that are not too small.

Although the reduction in MEI as batch sizes grow, both computing time and MESS

generally show an upward trend. Initially, the computing time and MESS decline with

batch sizes up to 3000, likely due to the improved higher accuracy of estimated gradients.

However, beyond a batch size of 3000, MESS and the computing time start to rise. This

suggests that a batch size of 3000 may be optimal for DGM models trained up to MEI in

terms of computational efficiency. The next section will discuss PnL validation, where this

observation becomes even clearer.

Batch Size MEI MESS (thousands) Computing Time (min)

200 Unattainable - -

400 399,356 159,742.4 83.199

600 355,270 213,162.0 82.896

800 200,400 160,320.0 48.430

1000 146,206 146,206.0 36.552

3000 72,589 217,767.0 36.295

5000 71,081 355,405.0 52.718

10000 72,434 724,340.0 96.579

15000 65,590 983,850.0 128.447

20000 53,746 1,074,920.0 138.844

25000 58,431 1,460,775.0 194.770

Table 4: MEI, MESS (in thousands), and the corresponding computing time (in minutes) for models trained

with different batch sizes.
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Figure 5: Trade-off relationship between MEI and batch size with regression by a power function kx−0.41.

6.4. Test Results: Validation by PnL Simulations

To validate the trained DGM model’s performance, we simulate 1,000 paths of the market-

makers’ wealth process and obtain 1,000 terminal PnL values. Table 5 presents the summary

statistics of terminal PnL for models trained with different batch sizes under the MEI,

continued, extended, and refined configurations, which is further illustrated in Figure 7.

The error at the terminal condition are displayed in Figures A.14, A.15, A.16, and A.16 for

the MEI, continued, extended, and refined cases, respectively.

Table 5: Summary statistics of PnL validation for different batch sizes with four iteration conditions – the

MEI, continued, extended, and refined cases.

Batch
MEI Continued Extended Refined

Mean Std Min Max Mean Std Min Max Mean Std Min Max Mean Std Min Max

400 283.7 129.7 -1063.8 439.2 296.2 124.1 -851.2 433.0 304.6 107.5 -338.2 442.7 300.9 111.7 -660.6 452.5

600 306.7 31.0 199.9 409.7 296.7 31.1 215.7 395.3 310.9 31.87 209.0 420.1 291.7 31.7 196.9 425.9

800 341.4 30.2 232.0 440.0 333.2 31.2 231.7 455.3 326.9 30.90 229.3 443.6 333.7 30.9 235.6 435.9

1,000 341.9 31.3 238.2 438.1 330.4 30.6 231.0 437.7 310.0 32.31 216.7 418.6 332.7 31.1 247.7 439.2

3,000 345.7 30.9 259.1 445.2 342.0 29.7 238.2 444.0 301.4 31.66 198.7 397.9 340.2 30.3 237.6 448.8

5,000 333.6 37.0 -289.3 427.5 303.1 30.4 194.8 394.2 222.5 31.27 136.3 331.8 310.1 30.9 219.7 421.3

10,000 327.9 30.7 230.1 442.8 295.8 31.5 201.8 380.4 245.8 32.35 124.5 362.9 296.3 31.4 210.4 410.6

15,000 328.8 32.1 233.7 429.9 268.3 30.9 179.4 377.5 205.7 31.86 112.9 297.3 269.3 31.3 169.3 399.3

20,000 336.3 29.9 250.7 419.8 319.2 30.9 229.3 435.2 214.8 31.93 114.6 303.1 318.8 30.5 214.9 424.4

25,000 324.7 31.5 228.1 417.3 257.6 32.0 161.8 355.6 167.9 31.68 72.9 262.7 261.9 31.9 183.4 383.6

These results highlight two distinct features: First, the models trained up to the MEI

configuration outperform those trained under other configurations across almost all batch

sizes in terms of mean of terminal PnLs and the coefficient of variation (CV), which is the

standard deviation scaled by the mean. This indicates that training the model beyond the

MEI does not provide additional improvement. Instead, it appears to introduce overfitting,
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Figure 6: Relationship between MESS and batch size with the corresponding computing time. The left x-axis

shows the MESS values fitted with a power function kx0.59, and the right x-axis depicts the computing time

for different batch sizes. The horizontal line indicates an example of resource budget for computing time at

120 minutes.

resulting in inferior performance in terminal PnL compared to the MEI case. Moreover,

the models trained under configurations other than MEI demonstrate a downward trend

in mean terminal PnL as batch size increases. This also implies that potential overfitting

becomes more pronounced with larger batch sizes, particularly when the number of iterations

is higher.

Second, the models trained under the MEI configuration exhibit consistent mean terminal

PnL for batch sizes greater than 800. This consistency allows for flexibility in choosing a

batch size that is computationally efficient. Notably, the batch size of 3000 yields the highest

terminal PnL and the shortest computing time. The batch size of 3000 with MEI can be a

computationally the optimal model in DGM.

These findings have substantial implications for practical applications in the DGM ap-

proach. Contrary to the common assumption that random sampling mitigates overfitting,

our results demonstrate that overfitting can still occur if models are over trained, with the

issue becoming more pronounced as batch sizes increase. This highlights that it is critical

to select appropriate batch sizes to optimize computational resources and stable model out-

comes. These insights are critical particularly for whom has a limited budget for computing

resourse. For example, if a time budget is 2 hours per training, a model with a batch size

less than 10,000 can be chosen.

7. Sensitivity Analysis

In Section 3, we have discussed we explored how the value function of the market-maker’s

problem and its optimal strategies are influenced not only by a multitude of underlying

processes, which continuously self/mutual-interacting in short and lont term levels, but also
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Figure 7: Mean PnL (left) and its CV (right) across different batch size models trained under four conditions

of MEI, continued, extended, and refined cases.

by a set of model parameters necessary for constructing a LOB in a HF dynamic setting.

For given penalty terms φ and ψ, the optimal strategy to a limit buy order is dependent on

a time variable and five state variables of qt, λ
±
t , c

±
t , meaning that

(δ+
t )∗ = F0(t, qt, λ

+
t , λ

−
t , c

+
t , c

−
t ), (18)

where F0 represents a positive function determined by solving the HJB (11) through optimal

DGM training. The final wealth attained by the optimal strategies δ∗t of the market-maker

at time T depends on the mid-price process St, along with an initial wealth x, in addition

to the LOB processes and model parameters mentioned earlier. This same scenario applies

to the corresponding sell strategy (δ−t )∗.

In this section, we conduct sensitivity tests on the optimal market-making strategies and

the corresponding maximal expected wealth achievable at the end of trading, denoted as

E[PT ], obtained through δ∗t , where the final wealth at time T is defined in Eq.(16). We

employ DGM-approximated functions to assess the inherent relationships concerning the

variables of interest. This analytical investigation has not been previously explored in the

literature due to the high complexity of the HF market structure, as shown in Eq.(18). The

primary variables of interest in the sensitivity tests are the stability and manipulation of the

HF market.

For the tests, we select a batch size 3,000, learning rate 1 × 10−5, and MEI iterations

for DGM approximation under the LOB parameters of θ± = 0.5, ξ = 40, α± = 0.3, κc =

0.1, ηc = 8, νc = 5, and the market-maker’s parameters setting to trading time T = 300

seconds, liquidation cost φ = 0.1 and inventory penalty ψ = 0.0, implying the case that a

market-maker is not penalized for variations in inventory during trading.

7.1. Market Stability

The Hawkes model requires stability conditionsto ensure that order arrival processes do

not diverge over time, attributed to various influencing factors. For the market order arrivals

governed by the intensity processes λ±t , the bounded condition is (1 − κ)β/(µ + ν) > 0, as
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shown in Remark 1. We define an indicator of HF market stability as

Ist =
(1− κ)β

µ+ ν
.

A larger value of Ist denotes heightened stability in the HF market, while a smaller value

indicates the opposite.

The market stability Ist is influenced by four components, which are the self-exciting

parameter µ and the mutual-exciting parameter ν governing the degree of transitory noises;

the synchroning parameter κ reflecting long-term correlation between buy and sell order

arrivals; and the mean-reverting speed β indicating the extent to diminish for temporary

noise orders in the order arrival process. An increase in either µ or ν tends to reduce market

stability, as does a higher value of κ. Consequently, Ist shows negative associations with µ,

ν, or κ. However, a higher β implies greater stability in the HF market, leading to a positive

correlation between Ist and β. Unlike market order processes, we can assume that limit order

processes c±t remain stable as long as µc and νc remain finite. This is because limit order

dynamics only experience jumps when market orders are stimulated, remaining continuous

otherwise.

We hypothesize that a HF market-maker earns higher expected profit as the market

stability decreases with respect to µ, ν, κ, and β, and test it through linear regression. We

choose

η = 20, µ = 15, β = 100, κ = 0.2 (19)

as the base parameter case yielding Ist = 2.3, and select five Ist = 2.8, 2.5, 2.3, 2.0, 1.5 levels

for high, moderate high, base, moderate low, and low HF market stability cases, respectively,

as displayed in Table 6. Then, we generate the data set for the market-maker’s expected

PnL by simulating 1000 optimal wealth values after estimating the optimal strategies training

MEI iterations for 20 cases specified in Table 6. Table 7 includes descriptive sample statistics

of the generated data for the final PnL with estimated MEI for each case, and Figure A.18

illustrates the mean of the terminal PnLs with respect to the five stability levels attributed

to the driving factors κ, η, ν, β.

We test that the null hypothesis H0 of no relationship with respect to individual factors

η, ν, κ, β through linear regression, and the results are in Table 8. The test reveals that κ

and η are significant at the 1% and 5% levels, respectively, whereas ν and β are not. It

means when buy and sell orders are more synchronized or when market orders are more self-

excited, higher market instability corresponds to higher profits, and lower market instability

leads to lower profits. In the components in HF market stability, synchrony reflecting the

long-term tendency in buy and sell orders emerges as the primary driving factor, and the

self-excited transient noise orders serve as a secondary factor, in influencing to a maker-

maker’s expected profit. When market stability rises due to factors like mutual excitement

and mean-reversion speed, In the cases when market stability rises due to the other factors

such as mutual excitement and mean-reversion speed, no significant relationship is observed.
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Table 6: Parameter selection for the sensitivity test to change in the synchronizing factor κ, the self-exciting

η factor, the mutually-exciting factor ν, and the mean-reversion speed β for the five stability level cases Ist.

Synchronizing κ Self-exciting η Mutual-exciting ν Mean-reversion β

Ist η ν β κ η ν β κ η ν β κ η ν β κ

2.8 20 15 100 0.02 14 15 100 0.2 20 9 100 0.2 20 15 123 0.2

2.5 20 15 100 0.13 17 15 100 0.2 20 12 100 0.2 20 15 109 0.2

2.3 20 15 100 0.20 20 15 100 0.2 20 15 100 0.2 20 15 100 0.2

2.0 20 15 100 0.30 25 15 100 0.2 20 20 100 0.2 20 15 88 0.2

1.5 20 15 100 0.48 38 15 100 0.2 20 33 100 0.2 20 15 66 0.2

Table 7: Summary statistics for simulated terminal PnL samples for different stability levels Ist attributed

to various factors (κ, η, ν, β) under the optimal DGM model trained with MEI iterations. The statistics

include sample mean, sample standard deviation (Std), minimum (Min), maximum (Max), and coefficient

of variation (CV).

Factor Value MEI Stability Ist Mean Std Min Max CV

κ

0.02 50,912 2.80 286.7 30.0 206.8 397.2 0.1046

0.13 55,682 2.50 330.0 31.1 240.6 431.3 0.0943

0.20 41,280 2.29 346.2 32.2 226.3 453.3 0.0930

0.30 62,259 2.00 376.8 33.0 273.5 477.2 0.0874

0.48 113,706 1.00 505.9 38.4 378.0 636.3 0.0759

η

14 41,887 2.80 344.9 33.2 251.0 448.9 0.0964

17 41,863 2.50 343.8 32.4 246.8 437.3 0.0944

20 41,280 2.29 346.2 32.2 226.3 453.3 0.0930

25 50,136 2.00 331.3 31.8 236.5 424.0 0.0959

38 85,726 1.00 356.0 31.0 253.7 454.4 0.0872

ν

9 39,556 2.80 342.8 31.9 246.8 445.1 0.0930

12 40,143 2.50 343.1 32.4 238.0 465.7 0.0945

15 41,280 2.29 346.2 32.2 226.3 453.3 0.0930

20 38,604 2.00 342.8 31.9 263.0 452.6 0.0931

33 115,217 1.00 364.8 31.9 270.3 466.7 0.0874

β

123 46,387 2.80 341.9 31.8 230.1 465.0 0.0931

109 39,346 2.50 348.3 32.5 245.3 477.1 0.0932

100 41,280 2.29 346.2 32.2 226.3 453.3 0.0930

88 56,538 2.00 335.5 31.8 242.7 442.4 0.0949

66 159,038 1.00 368.7 32.6 238.3 468.2 0.0883

Next, we test multiple null hypothesis that the mean PnL under lower stability is less

than or equal to the mean PnL under higher stability for the following four pairs: high ≥
moderate high, moderate high ≥ base, base ≥ moderate low, and moderate low ≥ low. To

ensure that the results are is statistically significant in multimple comparison tests, we use
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Table 8: Linear regression results of the market-maker’s expected PnL with respect to each parameter

κ, η, ν, β determining the HF market stability Ist. t-statistics are in parentheses, and standard errors are in

square brackets. *** p < 0.01, ** p < 0.05, * p < 0.1.

κ η ν β

Intercept 244.97*** 315.39*** 337.31*** 387.5442***

(18.654) (25.308) (25.275) (11.499)

[13.132] [12.462] [13.346] [33.703]

κ 5.1284***

(10.733)

[0.478]

η 1.2054**

(2.351)

[0.513]

ν 0.4559

(0.673)

[0.678]

β -0.5238

(-1.540)

[0.340]

R-squared 0.975 0.648 0.131 0.442

a 1% significance level by applying the Bonferroni correction (Dunn, 1961). This correction

divides the desired significance level by the number of tests, leading to an adjusted threshold,

that is, 0.01/4. Thus, the null hypothesis is rejected if the p-value is smaller than this

adjusted threshold. This is to adjust the significance level of multiple comparisons, typically

to mitigate the issue of inflated Type I error rates.

The linear regression examined overall relationship between a market-maker’s PnL and

the market stability environment, while the multiple comparison test can give the insight

into how the market-maker’s profitability changes when the market stability regime shift

from one to the other level. Table 9 presents four t-tests comparing the mean PnL across

different stability levels attributed to the four factors κ, η, ν, and β. P -values are provided

in parentheses with the rejection rule based on a Bonferroni corrected alpha of 0.0025.

From these results, we observe the following: For κ, the null hypothesis is rejected in all

four tests. This indicates that as market orders become more synchronized (i.e., as stability

decreases), the market-maker’s expected optimal wealth increases. As this trend is evident

in Figure A.18, the plot for κ clearly demonstrates a positive linear relationship between

stability and mean PnL. Notably, the mean terminal PnL under low stability is nearly twice

as high as that under high stability, highlighting a significant and surprising finding.

Another significant finding is the rejection of the null hypothesis in the case (4) that the

mean PnL under the moderate low stability is greater than or equal to one under the low
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case for each factor. This means that when market stability shifts from moderate low to low,

the market-maker’s expected profit increases significantly, regardless of type of attributing

factors κ, ν, η, or β. In contrast, we fail to reject the null hypothesis in all other tests except

for high ≥ moderate high for β. This suggests that the expected optimal wealth of the

market-maker is not significantly affected by changes in stability levels for η and ν under the

conditions tested.

These findings carry implications of the relationship between the market-maker’s optimal

value function and HF stability environment. The market-maker’s optimal value function

demonstrates a linear relationship with κ, while it appears to have nonlinear (i.e. combi-

nation of monotonic and linear) structures with respect to η, ν, and β. As a whole, the

market-maker’s expected optimal wealth increases when market stability is lowered. This

tendency appears consistently for change in κ across all market stability levels, while it mean-

ingfully emerges for the changes in η, ν, and β only when the degree of market instability

changes from a moderate low level to a low level.

Table 9: Multiple t-tests comparing the mean PnL across different stability levels for the four factors: κ, η,

ν, and β. The hypothesis tests determine if the mean PnL under lower stability is higher than the mean PnL

under higher stability. P-values are provided in parentheses with the rejection rule based on a Bonferroni

corrected significance level of 0.0025.

H0 κ η ν β

(1) High ≥ Moderate high Reject Not Reject Not Reject Reject

(0.000) (0.770) (0.395) (0.000)

(2) Moderate high ≥ Base Reject Not Reject Not Reject Not Reject

(0.000) (0.042) (0.014) (0.912)

(3) Base ≥ Moderate low Reject Not Reject Not Reject Not Reject

(0.000) (1.000) (0.991) (1.000)

(4) Moderate low ≥ Low Reject Reject Reject Reject

(0.000) (0.000) (0.000) (0.000)

7.2. Market Manipulation

We are concerned about the relationship between the optimal market-making strategy

and the extent to market manipulation by other HF traders. As one of market disrupting

behaviors, we consider spoofing. The act of spoofing is known as a specific trading activity

that aims at artificially modifying the supply (limit orders) on the market without an intent

to trade. Spoofers post a relatively large number of limit buy or sell orders with the intent

to cancel before the orders are executed, to make other market participants believe that

there is pressure to sell or buy the asset, illustrated in Figure 8. Spoofers can profits from

timed buying and selling based on this manipulation. Since it can cause a sharp rise and

fall of asset prices in a sudden and extremely turbulent market with exaggerated volatility

and correlation, spoofing has been regarded as an illegal activity since the Dodd–Frank
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Act (Dodd-Frank, 2010). However, from a practical perspective, it is difficult to clearly

understand the intention to cancel for manipulation purposes unless the volume feigned to

buy or sell is sufficiently large. Thus, at the individual trader level, the surveillance and

detection of spoofing may not be valid.

Cartea et al. (2018, 2020) introduce the volume imbalance index as a quantitative measure

of spoofing. The index ρt is defined as the degree of imbalance in the buy and sell limit orders

currently being stack in the market such that

ρt =
c−t − c+

t

c−t + c+
t

,

where c±t are the best prices of the limit buy (-) and sell (+) orders at time t. This index

can indirectly measure the extent to how much spoofing behavior (spoofing-like) are getting

involved in the current market. The value ρt lies between ±1, where the extreme values of

±1 represent the case when only buy (or sell) limit orders are piled in the book and ρt = 0

means the case of exactly buy-sell balanced. The value of ρt is divided into three buckets:

(−1, 1/3) for buy-heavy; (−1/3, 1/3) for neutral; and (1/3, 1) for sell-heavy cases.

We consider the model of the limit order dynamics that spoofers are involved

dc−t = βc(θ
−
c − c−t + κcc

+
t )dt+ ηcdM

−
t + νcdM

+
t + γ−dJ−t ,

dc+
t = βc(θ

+
c − c+

t + κcc
−
t )dt+ ηcdM

+
t + νcdM

−
t + γ+dJ+

t ,
(20)

where γ± are positive constants and J±t are independent Poisson processes with a constant

intensity µ±, respectively. The LOB in Eq.(20) contains Poisson jumps occurring with a

frequency rate µ±dt on average and the jump size γ± in each buy and sell dynamic, besides

of temporary upsurge influence by market order arrivals. µ represents how often spoofers

are posting the unintended limit orders in a buy (or sell) side, and γ shows how large the

posted limit orders by spoofers at once are. These unexpected jumps of the limit order depth

dynamics with µ and γ signify that transitory imbalance between buy and sell limit orders

emerge. The differences between µ+ and µ− and between γ+ and γ− can be larger as more

spoofing activities are engaged in the market. Figure A.19 simulates the sample paths of

the limit order depth processes when the buy-sell limit orders are balanced. Figure A.20

illustrates the buy-heavy LOB case samples with intensity γ− = 20 and frequency µ− = 0.1,

and the degree of imbalance ρt is accordingly exhibited in Figure A.21.

We test how spoofing behavior can worsen the optimal expected profit of a market-

maker for diverse selection of µ and γ. Table 10 shows the parameter choice to illustrate five

different levels of buy-heavy imbalance including the base case with no manipulation. To see

the effect from frequency µ and intensity γ seperately, we divide into two cases – µ-varying

with no change in γ and γ-varying with no change in µ. Note that sell-heavy imbalance can

be illstrated and tested in the same manner.

We consider the situation that a market-maker employs the optimal trading strategy

under assuming no spoofing activities, yet the market is being manipulated by spoofers.
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We compare the market-maker’s expected terminal PnL between under the scenarios that

the LOB is not manipulated (which is the case the market-maker is employing the optimal

strategies) and is manipulated across various spoofing frequencies and intensities in Eq.(20)

(which is the case the market-maker is using suboptimal strategies but does not know). All

the scenarios are estimated by DGM with the base case parameter in Eq.(19). Generating

1,000 samples of terminal PnL under each scenario, we compare the changes in the mean

terminal PnL relative to the base case without spoofing.

Table 11 presents summary statistics of terminal PnL for different spoofing frequency µ−

on the buy side of the LOB, with the spoofing intensity γ− fixed at 10. We observe a clear

and consistent decrease in mean terminal PnL as spoofing frequency increases, which is not

surprising. It is linear of the extent to worsen for the PnL to the increase in the frequency

level, where the rate of decreasing in the PnL is approximately $12.4 for rising 0.1 in the

spoofing frequency.

Table 12 shows the mean terminal PnL under different spoofing intensity γ− while keeping

the spoofing frequency µ− fixed at 0.3, which are visually illustrated in Figure A.22. Unlike

the frequency case, the mean terminal profit displays almost no change to the different size of

spoofing intensity after it largely drops when market imbalance has appeared, as seen in the

PnL values of the base case versus the others. The effect of spoofing intensity on PnL might

appear counterintuitive, but it can be explained as follows. Such indifference relationship

to varying γ occurs because the optimal posting strategy has a reciprocal relation with the

depth of the LOB c±. LOB markets follows a price-time priority rule, where limit orders

offering the best price get executed first. Among orders with the same price, those placed

earlier have execution priority. When the buy side of the LOB is manipulated by spoofing

orders, the buy-side queue will get longer. Then, the market-maker is required to post

the limit orders much closer to the mid-price to increase the probability of execution or

to reduce execution risk, but one cannot place buy limit orders higher than the mid-price,

that is, δ∗ ≥ 0. Consequently, the effect of worsening PnL for the market-maker due to the

overstated limit orders by spoofers can be limited, regardless of spoofing intensity size.

Concludingly, frequent spoofing activity even with smaller sizes of fake orders can hurt the

market-maker’s profits as these small distortions accumulate over time. This finding gives

important implications to market-makers about danger of a particular spoofing behavior

pattern, as collective spoofing can have substantial effects. Trading risk of market-making

may be limited incurred by one large-sized spoofing orders; but, it can be significantly

enlarged by frequent and collective small-sized spoofing behavior. Because of the nature

that smaller spoofing sizes make it increasingly difficult to differentiate, it is more complicate

to detect spoofing activities. Authorities and regulatories should exercise great caution in

defining and identifying what constitutes spoofing to protect genuine traders.
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Table 10: Parameter selection for five buy-heavy imbalance levels across different spoofing frequency (left)

and intensity (right) including the base case of no manimulation with the other LOB model parameters

chosen with Eq.(19).

Varying Frequency Varying Intensity

Case γ+ γ− µ+ µ− γ+ γ− µ+ µ−

0. Base 0 0 0 0 0 0 0 0

1. Weak 0 10 0 0.1 0 5 0 0.3

2. Moderate 0 10 0 0.2 0 10 0 0.3

3. Moderate Strong 0 10 0 0.3 0 15 0 0.3

4. Strong 0 10 0 0.4 0 20 0 0.3

5. Very Strong 0 10 0 0.5 0 25 0 0.3

Table 11: Summary statistics of terminal PnL samples estimated by DGM with the base case, when spoofers

are engaged at different frequency µ− but the same intensity γ− = 10 in the buy side LOB.

Case γ− µ− Mean Std Min Max CV

0. Base 0 0 329.0 33.0 203.8 430.8 0.100

1. Weak 10 0.1 315.2 31.5 214.7 429.2 0.010

2. Moderate 10 0.2 300.1 30.9 195.8 398.8 0.103

3. Moderate Strong 10 0.3 288.5 30.3 205.2 376.6 0.105

4. Strong 10 0.4 277.7 30.2 177.7 368.4 0.109

5. Very Strong 10 0.5 266.8 29.2 165.1 365.0 0.109

Table 12: Summary statistics of terminal PnL samples estimated by DGM with the base case, when spoofers

are engaged at different intensity γ− but the same frequency µ− = 0.3 in the buy side LOB.

Case γ− µ− Mean Std Min Max CV

0. Base 0 0 329.0 33.0 203.8 430.8 0.100

1. Weak 5 0.3 289.4 30.0 198.8 394.8 0.104

2. Moderate 10 0.3 288.5 30.3 205.2 376.6 0.105

3. Moderate Strong 15 0.3 288.6 30.9 172.0 383.0 0.107

4. Strong 20 0.3 288.8 30.8 206.6 386.3 0.107

5. Very Strong 25 0.3 289.0 29.4 204.9 382.9 0.102

8. Concluding Remarks

This study has discussed the two aspects for the HF market-maker’s problem constructed

in the LOB setup by Choi et al. (2021).

First, we proposed an efficient DGM model to estimate the optimization problem charac-

terized as a solution of the high-dimensional PDE. We introduced a novel scheme of validating

the DGM-approximated solutions through simulation of the sample distribution of the value
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function. With the validation method, we were able to observe overfitting issues in DGM,

which has never been discussed in the previous literature, by exploring the cases studies.

Large batch size and small learning rate can easily lead to be overfitting for DGM models,

because less noise in estimating gradient in the SGD optimizer can degrade the DNN model

generalization power, yielding the model to more likely get stuck in sharp minima areas than

smaller batch and larger learning rate models.

This investigation motivated us to find the optimal size of batch and the learning rate

to obtain a robust and efficient DGM model in terms of training loss and validation. By

employing new measurements – MEI and MESS that gauge the minimum training iterations

and the minimum total samples in DGM, respectively, for a given batch size, we derived

empirical relationships between batch size and MEI, and batch and MESS of the DGM

models that achieve the similar training loss and model performance levels. Our findings are

as follows. Batch size and MEI had a trade-off relationship, whereas batch size and MESS

exhibited a positive relationship, which implies larger batch requires more computing cost

to achive the same level of training loss and PnL validation. These results provide us a

reference for selecting the optimal DGM model given a limited computing budget to obtain

a robust DGM model.

Second, we examined the interaction of the diverse environments to determine the de-

grees of HF market stability and market manipulation with the market-maker’s maximized

expected wealth, by generating proper data sets using the optimal training configurations

for DGM. The sensitivity analysis brought us the following findings. Based on the HF

market stability measured with the four parameters including the synchronizing factor, the

self/mutual-exciting componenets, and the mean-reversion speed, as a whole, lower market

stability enhances profitability of the market-maker, yet which is the case only when the

synchrony level between buy and sell orders increase, or the self-exciting tendency in each

market order arrival rises. For the case that market stability increased by mutual-exciting

and mean-reversion speed factors, there exhibited a significant relationship only when the

market stability regime shifted from a moderate low to a low level, not for the whole range.

HF market manipulation was discussed with spoofing behaviors. We examined how much

spoofing behaviors can deteriorate the market-maker’s profit in terms of the spoofing fre-

quency and the intensity size. We observed that the frequency of the emergence of spoofers

does matter to worsen for the optimal market-maker’s wealth significantly, while its intensity

has a limited effect to hurt the market-maker’s profit. It means frequent and collective spoof-

ing behaviors even with smaller sizes of unintended orders to execute can largely disrupt to

play primary roles for a market-maker for provision of liquidity by hurting its profitability. As

considering the nature that small-sized spoofing or spoofing-like trading is increasingly diffi-

cult to be detected due to largely unknown sophisticated schemes employed by HF traders,

regulatories should take great cautions to set right policies for HF illegal trading including

spoofing and sniffing, to assist genuine HF traders to play their own roles.

The proposed validation method available in DGM and the strategy to select the optimal

DGM model are widely applicable, not limited to our market-maker’s problem, offering bene-

33



fits to fields such as quantitative finance, reinforcement learning, and other high-dimensional

optimization problems. Also, for the empirical findings for HF trading in terms of market

stability and manipulation, we believe that market practitioners and relevant policy mak-

ers should recognize our empirical results that the market-makers intimately interact with

delicate changes in HF market evironments for better management of HF trading.
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Figure 8: Illustration of the act of spoofing versus normal trading in the LOB.
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Figure A.9: Terminal PnL over simulations for different training iterations. Each subplot shows the Terminal

PnL corresponding to the same model at different stages of training
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Figure A.10: MEI case: The last 1000 training losses for the MEI case, which shows the stability and

convergence behavior of the training process near MEI.
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Figure A.11: Continued case: The last 1000 training losses for the continued case, which illustrates the

training behavior during the additional 50,000 iterations beyond MEI.
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Figure A.12: Extended case: The last 1000 training losses for the extended case, which highlights the training

dynamics during the prolonged training iterations beyond MEI.
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Figure A.13: Refined case: Last 1000 training losses for the refined case, which shows the training behavior

as the learning rate is progressively reduced following MEI.
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Figure A.14: MEI case: Absolute difference between the terminal condition of g and its DNN-approximated

solution f for models trained with different batch sizes under the MEI case.
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Figure A.15: Continued case: Absolute difference between the terminal condition of g and its DNN-

approximated solution f for models trained with different batch sizes under the continued case.
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Figure A.16: Extended case: Absolute difference between the terminal condition of g and its DNN-

approximated solution f for models trained with different batch sizes under the extended case.
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Figure A.17: Refined case: Absolute difference between the terminal condition of g and its DNN-

approximated solution f for models trained with different batch sizes under the refined case.
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Figure A.18: Comparative sensitivity of the mean terminal PnL across levels of stability attributed to factors

(κ, η, ν, and β).

Figure A.19: LOB depth dynamics over time under no spoofing (buy/sell-balanced).

48



Figure A.20: LOB depth dynamics over time with spoofing activity engaged in the buy LOB with intensity

γ− = 20 and frequency µ− = 0.1 (buy-heavy).

Figure A.21: Order imbalance ρt over time with the parameters in Figure A.20. Stars represent the timings

of spoofed buy orders. The horizontal blue and red lines correspond to order imbalance values of 1/3 and

-1/3, respectively. Order imbalance is considered neutral between these lines, sell-heavy above the blue line,

and buy-heavy below the red line.
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Figure A.22: Mean terminal PnL across different spoofing frequencies with the same spoofing intensity

γ− = 10 (left) and across different intensity sizes with the same spoofing frequency µ− = 0.3 (right) in the

buy side of LOB.
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