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Abstract

The outbreak of the COVID-19 pandemic led to a considerable increase in financial market volatil-
ity. This study employs linear and time-varying regression models to examine the role of cryptocur-
rencies as potential hedges and safe-havens for various financial assets, including stocks, bonds,
and gold. In the linear regression models, cryptocurrencies do not exhibit hedging properties
against stocks. However, they demonstrate hedging capabilities against bonds. When employing a
time-varying regression model, our findings indicate that the hedging characteristics of cryptocur-
rencies vary across periods for stocks and gold. During the COVID-19 pandemic, when stock and
gold market volatilities experienced significant increases, cryptocurrencies did not exhibit hedging
properties against either asset. These periods are identified as the period between the end of 2020
and the end of 2022 for stocks and between early 2019 and the end of 2021 for gold. In contrast,
the estimated results suggest that cryptocurrencies act as bond hedge assets.
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1 Introduction

Since the emergence of Bitcoins, numerous cryptocurrencies have been created, leading to sig-

nificant growth in their market capitalization and transaction volume. The recognition of Bitcoin

as a legitimate financial entity was reinforced in December 2017, by the introduction of futures

contracts for Bitcoin by the Chicago Mercantile Exchange (CME) Group and the Chicago Board

Options Exchange (CBOE). This development profoundly impacted trading volumes, solidifying

its status as a credible financial instrument. The price of Bitcoin experienced substantial fluctu-

ations, characterized by hyper-exponential growth from March 2020 ($5,000) to December 2020

($20,000), followed by two peaks in April ($63,000) and November 2021 ($67,000) and a subse-

quent decline in November 2022. These fluctuations in price and extreme volatility, along with

the inherent value of cryptocurrencies, have generated significant interest among investors and

the general public, leading to active research in this field (Ciaian, Rajcaniova, and Kancs, 2016).

Prior studies primarily focused on examining the financial characteristics, returns, and volatility

patterns of Bitcoins (Balcilar, Bouri, Gupta, and Roubaud, 2017; Catania, Grassi, and Ravazzola,

2019; Bouri, Gupta, and Roubaud, 2019; Cross, Hou, and Trinh, 2021). More recent research has

explored the relationship between Bitcoin and other financial assets, energy markets, and com-

modities (Yermack, 2015; Ciaian, Rajcaniova, and Kancs, 2016; Li and Lucey, 2017; Shahzad,

Bouri, Roubaud, Kristoufek, and Lucey, 2019; Bouri, Lucey, and Roubaud, 2020; Akhtaruzza-

man, Boubaker, Lucey, and Sensoy, 2021; Wen, Tong, and Ren, 2022).

The growing interest in cryptocurrencies as a hedge against other assets has gained traction in

the field of portfolio construction and risk management, particularly among professional investors.

Hedge assets act as financial safeguards, offsetting losses resulting from a decline in the price of

the target asset and exhibiting either no correlation or a negative correlation with another asset.

Owing to their unique price formation dynamics, cryptocurrencies are presumed to be minimally
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affected by macroeconomic variables and display weak or no correlation with traditional assets.

Consequently„ cryptocurrencies are recognized as valuable diversifiers or hedging tools (Bouri,

Jalkh, Molnár, and Roubaud, 2017; Luther and Salter, 2017; Corbet, Meegan, Larkin, Lucey, and

Yarovaya, 2018; Das and Kannadhasan, 2018; Charfeddine, Benlagha, and Maouchi, 2020). For

instance, during the 2013 European debt crisis, it was visually observed that cryptocurrency prices

moved in the opposite direction to traditional assets in response to global uncertainty.

Previous studies have primarily focused on hedge and safe-haven assets such as gold, other

financial assets (stocks, bonds), energy, and commodities. Gold has traditionally been consid-

ered a hedge and safe-haven asset during times of economic instability (Baur and Lucey, 2010;

Ciner, Gurdgiev, and Lucey, 2013; Beckmann, Berger, and Czudaj, 2015; Cross, Hou, and Trinh,

2021). However, the safe-haven and hedging capabilities of gold have been scrutinized in several

studies, including those by Lucey and Li (2015) and Shahzad, Raza, Roubaud, Hernandez, and

Bekiros (2019). Additionally, Akhtaruzzaman, Boubaker, Lucey, and Sensoy (2021) discovered

that gold lost its safe-haven status during the second phase of the COVID-19 pandemic (March 17,

2020–April 24, 2020) when investors turned to gold as a "flight to safety," resulting in a substantial

increase in its portfolio weight. Consequently, cryptocurrencies have gained prominence in the

past decade as financial safeguards against market turmoil, replacing gold as the preferred asset for

certain individuals (Bouoiyour, Selmi, and Wohar, 2019).

Bouri, Gupta, Lau, Roubaud, and Wang (2018) found that Bitcoin acts as a hedge against the

global financial stress index at both tails of the distribution. From a medium-term perspective,

it is also found that Bitcoin can serve as a safe-haven against the global financial stress index.

Similarly, Bouri, Gupta, Tiwari, and Roubaud (2017) demonstrated that Bitcoin reacts positively

to global uncertainty and can hedge against lower and upper ends of Bitcoin returns and global

uncertainty. Selmi, Mensi, Hammoudeh, and Bouoiyour (2018) explored the relationship between

oil and Bitcoin and found that Bitcoin and gold tend to behave similarly during times of finan-

3



cial stress, serving as a hedge, safe-haven, or diversification against oil, depending on market

conditions. Charfeddine, Benlagha, and Maouchi (2020) analyzed the spillovers between Bitcoin

and other financial assets, revealing Bitcoin’s potential to hedge stocks and the crude oil market.

Post the COVID-19 pandemic, studies have examined how the relationship between cryptocurren-

cies and other assets has changed within the cryptocurrency market. Notably, Mariana, Ekaputra,

and Husodo (2021) found that Bitcoin and Ethereum served as safe-havens for stocks during the

COVID-19 crisis.

However, some studies argue that Bitcoin is more suited to serve as a diversifier rather than

an adequate hedge or safe-haven against other assets (Briere, Oosterlinck, and Szafarz, 2015;

Dyhrberg, 2016; Bouri, Molnár, Azzi, Roubaud, and Hagfors, 2017; Bouri, Jalkh, Molnár, and

Roubaud, 2017; Baur, Hong, and Lee, 2018; Corbet, Meegan, Larkin, Lucey, and Yarovaya, 2018;

Ji, Bouri, Gupta, and Roubaud, 2018). Specifically, Bouri, Molnár, Azzi, Roubaud, and Hagfors

(2017) suggest that Bitcoin is inadequate as a hedge for other assets, with the exception of Asian

stocks, but it can be suitable for diversification purposes. Similarly, Bouri, Jalkh, Molnár, and

Roubaud (2017) revealed that Bitcoin’s hedging and safe-haven properties against commodities

were only observed prior to the 2013 stock market crash, after which it primarily served as a di-

versifier. Interestingly, Shahzad, Bouri, Roubaud, and Kristoufek (2020) demonstrated that gold

outperforms Bitcoin as a hedge, offering higher and more stable hedging benefits for the G7 stock

index, particularly when the stock and gold markets are in a bearish state, whereas Bitcoin only

exhibits hedging capabilities for the Canadian stock index. Kajtazi and Moro (2019) demonstrate

that Bitcoin positively influences the performance of portfolios containing various assets; however,

most of the portfolio’s performance enhancement stems from increased returns rather than reduced

volatility. Furthermore, some argue that cryptocurrencies remain highly volatile and unstable,

driven by irrational bubbles, suggesting that the market is still far from efficient and mature (Cheah

and Fry, 2015; Cheung, Roca, and Su, 2015; Fry and Cheah, 2016; Bouoiyour, Selmi, Tiwari, and
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Olayeni, 2016; Corbet, Lucey, and Yarovaya, 2018; Corbet, Lucey, Urquhart, and Yarovaya, 2019;

Hafner, 2020).

Furthermore, with the rapid evolution of the cryptocurrency market in terms of returns and

excess volatility over the past decade, the role of time has emerged as a crucial factor. Therefore,

the primary objective of this study is to examine the dynamic nature of the relationship between

cryptocurrencies and other assets, including stocks, bonds, and gold, by analyzing changes in their

performance during major market shocks across different time periods. Prior research has high-

lighted the dynamic association between the cryptocurrency market and other assets, attributed

to the increased returns and volatility of cryptocurrencies (Ji, Bouri, Gupta, and Roubaud, 2018;

Shahzad, Bouri, Roubaud, Kristoufek, and Lucey, 2019; Urom, Abid, Guesmi, and Chevallier,

2020; Abakah, Alana, Madigu, and Rojo, 2020). Additionally, cryptocurrencies exhibit varying

responsiveness to uncertainty across periods (Qin, Su, and Tao, 2021). Notably, recent research

has focused on the contagion effect of the COVID-19 pandemic on financial markets, highlight-

ing the structural changes in the cryptocurrency market as a response to the downturn caused by

COVID-19 (Huang, Duan, and Mishra, 2021; Chemkha, BenSaïda, Ghorbel, and Tayachi, 2021;

Wen, Tong, and Ren, 2022).

The main contributions of this study are as follows. First, we account for a rich set of cryp-

tocurrencies, including the well-known eight cryptocurrencies, and test whether they can provide

risk coverage for stocks, bonds, and gold, thus providing more general guidance for risk managers.

The dataset covers April 2014 to December 2022 and encompasses significant events and volatile

periods in the cryptocurrency market. By considering a relatively extended period that includes

major events such as the cryptocurrency market crash in 2018, the COVID-19 pandemic, and the

Russia-Ukraine conflict, we observe the dynamic relationship between cryptocurrencies and other

assets in response to market shocks more clearly. Importantly, our study is particularly interest-

ing as it covers the pre, during-, and post-COVID-19 periods, in contrast to existing studies that
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primarily focus on the temporary impact of COVID-19 (Conlon and McGee, 2020; Chan, Le, and

Wu, 2019; Corbet, Larkin, and Lucey, 2020; Corbet, Hou, Hu, Larkin, and Oxley, 2020; Mariana,

Ekaputra, and Husodo, 2021).

Second, to address the time-varying behavior, we investigate the property of hedging using

a novel approach, a type of semi-parametric method known as the partial linear model proposed

by Fan and Huang (2005) and Zhang, Lee, and Song (2002). The semi-parametric approach is

quite useful compared to the parametric and nonparametric approaches in several ways, as it of-

fers a compromise between them (Robinson, 1988; Fan and Huang, 2005). The time-varying and

asymmetric behavior of financial markets has been discussed using different approaches in prior

studies (Khalfaoui, Boutahar, and Boubaker, 2015; Li and Lucey, 2017; Antonakakis, Chatzianto-

niou and Gabauer, 2019; Shahzad, Bouri, Roubaud, Kristoufek, and Lucey, 2019; Bouri, Lucey,

and Roubaud, 2020). However, these studies mostly employed parametric approaches, which run

the risk of mis-specifying the model due to the strict assumption that the distribution of the model

must be specified with parameters for estimation. In contrast, one of the notable advantages of the

partial linear model is its robustness to model misspecification, allowing more reliable estimates

to be obtained. As the time-varying hedging behavior is described by an unknown function, the

partial linear model provides greater flexibility compared to parametric models, overcoming the

limitations of non-parametric models that often face challenges related to the “dimensional curse”

when estimating the unknown function.

This study examines not only the behavior of cryptocurrencies during normal market condi-

tions but also their role as safe-haven assets during market turmoil. We adopt the definitions of

hedge and safe-haven assets from Baur and Lucey (2010) and Baur and McDermott (2010), who

analyze correlations during normal market periods and market crashes. Following this approach,

we explore the characteristics of safe-haven assets by considering periods of market downturn as

those with returns below the 0.05 and 0.01 quantile levels of the target asset. This methodology
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has been commonly employed in prior studies to investigate the downside risk coverage of various

assets (Conlon and McGee, 2020; Goodell and Goutte, 2021; Mariana, Ekaputra, and Husodo,

2021).

This study proceeds as follows. Section 2 introduces the time-varying parameter model. Sec-

tion 3 describes the data used in our empirical analysis. Sections 4 and 5 present the empirical

results and discussion, respectively. Finally, Section 6 concludes the study.

2 Econometric Models

To test whether cryptocurrency can be a hedge and safe-haven for stocks, bonds, and gold, we

consider the following regression model:

Rc,t = α + β1Rs,t + δ1Rb,t + γ1Rg,t + β2Rs,t(τ) + δ2Rb,t(τ) + γ2Rg,t(τ) + ϵt, (2.1)

where Rc,t, Rs,t, Rb,t and Rg,t denote returns on a cryptocurrency, stock, bond, and gold prices, re-

spectively, and Rs,t(τ), Rb,t(τ) and Rg,t(τ) account for crashes in the stock, bond, and gold markets,

respectively. The latter can be defined as returns less than τ quantile (τ = 0.05 and 0.01). For

example, Rs,t(τ) = Rs,t if Rs,t ≤ τ-quantile of {Rs,t}
T
t=1, and Rs,t(τ) = 0; otherwise. If β1 (δ1, γ1) is

zero or negative, the cryptocurrency is a hedge for stocks (bonds, gold) because on average the

assets are uncorrelated or negatively correlated with each other. If β2 (δ2, γ2) is nonpositive, then

the cryptocurrency serves as a safe-haven for stocks (bonds, gold). The error term ϵt is a random

disturbance with mean zero and finite variance σ2. The above model (2.1) is a benchmark model

and it can be extended to other well-known flexible models.

The parameters in (2.1) can be readily estimated by the least squares method, and the corre-

sponding interpretation is quite clear. However, in reality, it is unclear whether marginal effects are

indeed fixed. To incorporate time-varying parameters, (2.1) can be extended as

Rc,t = α + β1(t/T )Rs,t + δ1(t/T )Rb,t + γ1(t/T )Rg,t + β2Rs,t(τ) + δ2Rb,t(τ) + γ2Rg,t(τ) + ϵt, (2.2)

7



where β1(t/T ), δ1(t/T ), and γ1(t/T ) denote smooth time-varying functional coefficients. Note that

the coefficients in (2.2) are functions of the ratio t/T rather than of time t, which guarantees the

consistency of the non-parametric estimators for the coefficients under some regularity conditions.

Furthermore, β1(t/T ), δ1(t/T ), and γ1(t/T ) can detect investors’ time-varying hedging behavior

if the estimated coefficients over certain time periods are uncorrelated and negatively correlated.

Safe-haven behavior can be captured by nonpositive estimates of the fixed coefficients β2, δ2, and

γ2.

The functional coefficients in (2.2) can be estimated by the local linear semi-parametric estima-

tion method. The model in (2.2) belongs to a general class of semi-parametric models, as discussed

in Zhang, Lee, and Song (2002) and Fan and Huang (2005). In general, (2.2) can be represented

in the following form:

Rc,t =

3∑
j=1

g j

( t
T

)
Xt j +

4∑
i=1

ηiZti + ϵt, (2.3)

where Xt = (Rs,t,Rb,t,Rg,t)
′

, g(·) = (β1(·), δ1(·), γ1(·))
′

, Zt = (1,Rs,τ(t),Rb,τ(t),Rg,τ(t))
′

, and η =

(α, β2, δ2, γ2)
′

. By fixing the effects of Zti, (2.3) allows us to understand how the effects of Xt

vary across time periods. Under the assumption that g j(·) is continuous and has a second deriva-

tive, g j(·) can be approximated by its first-order Taylor expansion g j(u) ≈ g j(u0)+ g′j(u0)(u− u0) ≡

a j+b j(u−u0) locally around a small neighborhood of u0. To estimate the model, we considered the

following local linear estimator: Using matrix notation, Rc = (Rc,1, . . . ,Rc,T )
′

, Z = (Z1, . . . ,ZT )
′

,

X = (X1, . . . ,XT )
′

, and U = (1/T, 2/T, · · · , 1), then (2.3) can be written as follows:

R = g′(U)X + η′Z + ϵ,

where g(·) = (g1(·), g2(·), g3(·))
′

and η = (η1, η2, η3, η4)
′

.

There are several ways proposed in literature to estimate g(·) and η (Zhang, Lee, and Song

(2002) and Fan and Huang (2005), among others): In this study, we used the least-squares profile

estimation approach proposed by Fan and Huang (2005). Since the dimension of Ut is equal to 1.
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(2.3) does not suffer from dimensionality problem, which is a typical concern in non-parametric

and semi-parametric models when the dimensions of Ut are greater than 1. Following Fan and

Huang (2005), a consistent estimator for parameter η can be obtained by

η̂ = {Z′(I − S)′(I − S)Z}−1Z′(I − S)′(I − S)Y,

where S is the smoothing matrix,

S =


{X′

1 0}{D′

u1
Wu1Du1}

−1Wu1
...

{X′

1 0}{D′

uT
WuT DuT }

−1WuT


with

Du =


X′1

(
U1−u

w

)
X′1

...
...

X′T
(

UT−u
w

)
X′T

 , and Wu = diag(Kw(U1 − u), . . . ,Kw(UT − u)).

Therefore, using the above estimator η, the smooth time-varying parameters g
(

t
T

)
can be esti-

mated using the local linear estimation method using the following transformed regression:

Řc,t = Rc,t −

4∑
i=1

η̂iZti =

3∑
j=1

g j

( t
T

)
Xt j + ϵt, (2.4)

which can be viewed as the non-parametric varying-coefficient model. To estimate the model, we

considered the following local linear estimator:

min
{a j,b j}

3
j=1

T∑
s=1

Řc,t −

3∑
j=1

{
a j + b j

( s − t
T

)}
X jt


2

Kh

( s − t
T

)
,

where Kh(·) = K(·/h)/h, K(·) is a kernel function, and h is a bandwidth parameter satisfying

h → 0 and hT → ∞ as T → ∞. By solving the minimization problem, we obtain the estimators

{(â j, b̂ j), j = 1, 2, 3}. Following Fan and Gijbels (1996), we obtain:

ĝ j

( t
T

)
=

T∑
s=1

Wn, j

( s − t
T
,Xk

)
Řc,t, (2.5)
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where Wn, j((s − t)/T,Xk) = e′j,2p(X̃′WX̃)−1(Xk, ((s − t)/T )Xk)′Kh((s − T )/T ) is the effective kernel

defined in Fan and Gijbels (1996), e j,2p is a 2p×1 unit vector with 1 at the jth position, X̃ denotes a

T ×2p matrix with (X′i ,X
′
i((i−t)/T )) as its ith row, and W = diag{Kh((1−t)/T ), · · · ,Kh((T −t)/T )},

Xt = (X1t, · · · , Xpt)′. To obtain the estimators of the time-varying coefficients, we have to select

the kernel function k(·) and the bandwidth parameter h. Similar to the traditional non-parametric

method, the bandwidth selection is much more important than that of the kernel function. In the

empirical analysis, we use cross-validation, which is the usual data-driven bandwidth selection

approach for selecting h.

However, as the cryptocurrency’s return, Rc,t, is given by the dependent variable in (2.2), the

error terms are highly likely to have a volatility clustering effect. This is confirmed by Li, Kim,

and Park (2015) when the dependent variable is crude oil futures returns. In the empirical analysis,

we find that the error term follows a GARCH-type process. Neglecting the GARCH effect in the

error term process may lead to an inefficient estimator. To avoid this inefficiency problem, the

GARCH-type specification is included in (2.2)–(2.4).

ϵt|Ft−1 ∼ G(0, ht),

ht = c0 + c1ϵ
2
t−1 + c2ht−1, (2.6)

where G(0, ht) denotes a distribution with mean 0 and variance ht. Distribution G can be any

well-known distribution, such as normal, Student’s t, or skewed t-distributions. In our empirical

analysis, we used a normal distribution, which is the most frequently used distribution in empirical

analyses. As (2.4) is expressed in a non-parametric specification, the usual maximum likelihood

estimation (MLE) for (2.4) and (2.6) is not available. Thus, in this study, we use a weighted local

linear estimation method in which the weights are given by the estimated 1/
√

ht. However, ht is

unobservable. To obtain a feasible estimator, we need to estimate ht first. This can be achieved

by estimating the GARCH-type model using ϵ̂ in (2.3), which we can obtain using the usual local

linear estimation method with an appropriate choice of bandwidth h. Additionally, ht can be es-
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timated using the conventional MLE method. Along with the estimated ĥt, (2.4) can be rewritten

by

˜̌Rc, t =
3∑

j=1

g j(t/T )X̃ jt + ϵ̃t, (2.7)

where ˜̌Rc,t = Řc,t/
√

ĥt, X̃ jt = X jt/
√

ĥt and ϵ̃t = ϵt/
√

ĥt. By this transformation, ϵ̃t in (2.6) does not

follow the GARCH process: The efficient non-parametric estimators for g j(·), j = 1, 2, 3, are then

estimated using the local linear estimation method. These steps are repeated until convergence of

the non-parametric estimator is achieved.1 This estimation procedure is referred to as the profile

least squares method in Fan and Huang (2005). They derived asymptotic Properties of the semi-

parametric estimator.

3 Data and Descriptive Statistics

The daily closing prices (in USD) are utilized for the period ranging from April 29, 2014, to De-

cember 31, 2022. The time series of cryptocurrency prices were acquired from CoinMarketGap.2

The analysis focuses on the eight most well-known cryptocurrency assets, namely Bitcoin (BTC),

Ethereum (ETH), Binance Coin (BNB), Litecoin (LTC), Chainlink (LINK), Bitcoin Cash (BCH),

Monero (XMR), and EOS (EOS). The daily prices of the S&P 500 index are used as a proxy for

stock prices, the United States Treasury 10-year bond prices represent bond prices, and the Gold

Fixing Price at 3 P.M. (London time) in the London Bullion Market is used for gold prices.3

Figures 1-3 depict time series graphs illustrating the level and return of prices. The cryptocur-

rency market experienced a significant downturn in March 2020, which was likely influenced by

1When the models are estimated in our empirical analysis, the non-parametric estimates are almost the same after
the fourth iteration in most cases. All the models are estimated by using the R software; and the codes are available
upon request.

2Cryptocurrency trading occurs 24 hours a day. The closing price represents the latest data within the speci-
fied range based on coordinated universal time (CUT). The time series of cryptocurrency prices can be accessed at
https://www.coinmarketcap.com.

3The gold price is obtained from Federal Reserve Economic Data. The stock and bond prices are obtained from
Datastream.
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a sharp decline in the stock market. However, prices subsequently rebound, following a recovery

pattern similar to that observed for stock prices. Notably, cryptocurrency prices displayed a sub-

stantial upward trend from November 2020, peaking in April 2021. Subsequently, prices declined

sharply until June 2021, followed by a sharp increase in October 2021. By contrast, stock prices

have a consistent upward trajectory since the significant price drop in March 2020, which was

attributed to the impact of the COVID-19 pandemic. On the contrary, as one can see in Figure 3,

bond prices have continuously declined since 2019, with a sharp fall observed until April 2020 due

to the influence of COVID-19. However, bond prices experienced a noteworthy surge until April

2021. Interestingly, gold prices have an inverse relationship with bond prices. They consistently

increased from the end of 2018, continuing their upward trend until August 2021, after which it

gradually declined.

[Figures 1-3]

Table 1 provides an overview of the descriptive statistics for the return series. The return series

exhibits skewed and fat-tailed behavior, indicating deviations from a normal distribution. This

is further supported by the results of the Jarque-Bera normality test, which indicate that none of

the return series conforms to a normal distribution. Furthermore, the Ljung-Box Q-test statistics

reveal the presence of serial correlations in most return series, except for ETH and gold. This

finding suggests a significant relationship between the past and current returns in these series. To

investigate the presence of ARCH effects, Engle’s (1982) LM test statistics were employed. The

results, which are significant at the 1% level, reject the null hypothesis of no ARCH effect. This

finding supports the presence of volatility clustering characteristics, as illustrated by Figures 1-3 .

[Table 1]
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4 Empirical Results

To investigate the hedging behavior of cryptocurrencies, we consider three models for compari-

son: two fixed coefficient models (linear regression and GARCH regression models) and a semi-

parametric model with time-varying coefficients. A linear regression model is favored because of

its simplicity and clear interpretation. However, given the evidence of volatility clustering in the

cryptocurrency market (Selmi, Tiwari, and Hammoude, 2018; Bouri, Gupta, and Roubaud, 2019)

and price clustering observed across all three markets (Figures 1-3), a GARCH regression model

was also employed. Note that failing to account for autoregressive conditional heteroscedasticity

in the data leads to inefficient estimates. Finally, we employ a semi-parametric model to examine

the time-varying hedging behavior described by (2.3)-(2.6). The estimated coefficients provide

evidence of whether cryptocurrencies act as hedges or safe-havens in these three markets. Specifi-

cally, β̂1, δ̂1, and γ̂1 represent the simultaneous effects of stocks, bonds, and gold, respectively, on

each cryptocurrency under average market conditions, whereas β̂2, δ̂2, and γ̂2 capture the effects

during extremely negative market conditions, which are referred to as safe-haven effects. A nega-

tive or zero coefficient value of β̂1, δ̂1, and γ̂1 supports the hypothesis that cryptocurrencies act as

hedges, whereas a positive coefficient value does not.

Table 2 presents the estimation results for the linear regression model. The coefficient esti-

mates (β̂1) for all cryptocurrencies corresponding to stocks are positive and statistically significant,

suggesting that, on average, cryptocurrencies do not serve as effective hedges against stocks. Con-

versely, the estimated coefficients for bonds (δ̂1) and gold (γ̂1) indicate that cryptocurrencies exhibit

no significant correlation with these assets. This implies that cryptocurrencies have the potential to

serve as hedges, with the exception of EOS in relation to gold. Moreover, the coefficient estimates

representing safe-haven effects (β̂2, δ̂2, and γ̂2) reveal that for bonds and gold, all cryptocurrencies

are not significantly different from zero, except for LTC in relation to gold. Additionally, LTC and
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EOS demonstrate no significant correlations with stocks.

[Table 2]

Table 3 presents the results of the GARCH (1,1) regression model. The estimates (ĉ1 and ĉ2) for

the GARCH effect are found to be statistically significant, indicating the presence of persistent

conditional heteroscedasticity. The results for the stock and bond markets (β̂1 and δ̂1) are similar to

those of the linear regression analysis. Specifically, all cryptocurrencies are effective hedging tools

against bonds but do not serve as hedges against stocks. However, for gold, the GARCH regression

estimates demonstrate that six out of eight cryptocurrencies lack hedging capabilities, whereas the

linear model indicates that only EOS lacks hedging capabilities. Regarding the coefficients related

to safe-haven effects (δ̂2 and γ̂2), the results imply that we cannot reject the existence of safe-

havens for bonds and gold at the 0.05 and 0.01 quantile levels. The exceptions to this observation

are LTC and EOS at the 0.01 quantile level of the gold market. However, LINK, BCH, and EOS

are potentially safe-havens for extreme stock returns.

[Table 3]

Figures 4-6 summarize estimation results for the time-varying coefficients. The solid line repre-

sents the estimated coefficients, and the dashed lines represent the corresponding 95% confidence

bands. These figures comprehensively depict how the coefficient estimates develop over time.

Additionally, Table 4 concisely summarizes the estimated coefficients representing the safe-haven

characteristics.

Figure 4 demonstrates the results of the estimated time-varying coefficients for stocks. The

estimated coefficient was nonpositive before early 2020. However, between mid-2020 and the end

of 2022, the correlation is statistically significant and positive. Following the peak value in early

2022, the degree of comovement between the two variables gradually diminished. Our findings
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suggest that before early 2020, cryptocurrencies effectively served as hedging instruments against

downside risks in equity markets, indicating their potential as hedging assets during periods of

market stability. However, their hedging effectiveness in turbulent markets is contingent upon

the timing and prevailing market conditions, which lack robustness across different market states

(bullish or bearish). For instance, during calm market phases, such as from 2019 to early 2020,

cryptocurrencies have demonstrated reliability as hedging vehicles. By contrast, during periods of

market turbulence, although cryptocurrencies retained their hedging status during the bull and bust

phases from 2017 to 2018, they lost their hedging efficacy during the COVID-19 downturn (after

mid-2020). Notably, during both phases, cryptocurrencies’ prices and trading volumes exhibited

significant increases, accompanied by high returns and excessive volatility. Simultaneously, stock

markets experienced an upward trend. In the first phase, the limited correlation between stocks and

cryptocurrencies indicates that quantitative easing measures partly influence the moderate uptrend

in the stock market, whereas the exponential growth of cryptocurrencies is primarily driven by

speculative factors (Chowdhury, 2016; Klein, Thu and Walther, 2018). However, the sharp decline

in cryptocurrencies in 2018 was attributed to government regulations in emerging countries such

as China, which did not have a similar impact on the stock market.

[Figure 4]

Figure 5 illustrates the relationship between bonds and cryptocurrencies throughout the sample

period. The results indicate estimates that do not significantly differ from zero, indicating that

cryptocurrencies can serve as reliable hedges against bond market losses over the entire sample

period. Only BTC and BNB have positive and statistically significant values between early 2019

and before mid-2019. Our findings that cryptocurrency returns are uncorrelated with bond returns

in both normal and stressed market conditions aligns with the understanding that different price

influencers operate in these two markets. While bond returns are contingent upon interest rates,
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which are linked to the business cycle (Hamilton, 2005), exposing them to systemic economic

risk, cryptocurrencies are governed by a different mechanism. Notably, market confidence plays a

decisive role in shaping returns and risks associated with cryptocurrencies, and this aspect deserves

attention as price formation driven by market sentiment diverges significantly from that of bonds.

[Figure 5]

Figure 6 summarizes the results of estimated varying coefficients for gold. BTC, LTC, BCH, and

XMR exhibited similar patterns, with a positive estimated coefficient observed between 2019 and

2021. However, the estimates are not significantly different from zero before 2019 and after 2021.

Our findings suggest that from 2019 to 2021, BTC, LTC, BCH, and XMR did not effectively serve

as hedges in the gold market. However, they provide some level of protection for gold under normal

and stressful market conditions before 2019 and after 2022. In contrast, the estimated coefficients

for ETH, BNB, LINK, and EOS are not significant over the whole time-horizon. This implies they

have hedging capability against gold.

Our findings reveal significant heterogeneity in investors’ reactions to shocks in the gold mar-

ket across different cryptocurrencies. Specifically, cryptocurrencies that have existed for longer

periods, such as BTC, XMR, and LTC (released before 2014), do not provide adequate finan-

cial protection against gold price losses. These cryptocurrencies demonstrate hedging capabilities

when the gold market is calm, but this hedging effect diminishes during significant upturns in

the gold market. That is, the relationship between these cryptocurrencies and the gold market is

time-dependent and contingent upon the state of the gold market. In addition to the three cases

mentioned above, cryptocurrencies served as effective hedges against gold price fluctuations be-

fore 2019. They began to correlate positively after that, and the linkage continued to grow on

average until mid-2020 when gold prices continued their steep uptrend. The moderate rise in gold

prices was driven by developments in emerging markets before 2020, after which gold prices rose
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steeply driven by the COVID-19 pandemic. Subsequently, when gold prices fell and returned to

a calm market (after mid-2020), the linkage vanished, and cryptocurrencies regained their role as

hedges against gold when gold was in a stable state.

[Figure 6]

Table 4 presents the estimation results of the semi-parametric model, which investigates the role

of cryptocurrencies as safe-haven assets for stocks, bonds, and gold. These findings differ from

those obtained from the linear and GARCH regression models, revealing distinct patterns. A closer

examination of the results demonstrates the following key insights. First, focusing on stocks, most

cryptocurrencies, except for EOS, exhibit significant positive values at the 0.05 quantile level, in-

dicating that most cryptocurrencies do not act as safe-haven assets for stocks. However, under

extremely severe market conditions (at the 0.01 quantile level), all cryptocurrencies except XMR

demonstrate the characteristics of safe havens for stocks. Regarding bonds, only LINK and BCH

are identified as safe-haven assets at the 0.05 quantile level. However, under severe market condi-

tions (at the 0.01 quantile level), five of the eight cryptocurrencies (BTC, LTC, BCH, XMR, and

EOS) tended to act as safe havens for bonds. For gold, all cryptocurrencies display the character-

istics of safe-haven assets at the 0.05 quantile level. Moreover, under extreme market conditions

(at the 0.01 quantile level), only four cryptocurrencies serve as safe-havens for gold (ETH, BNB,

LINK, and EOS). In summary, the number of identified safe-haven assets increases for stocks and

bonds during severe market conditions. Conversely, in the case of gold, the number of cryptocur-

rencies demonstrating safe-haven properties has decreased. These findings differ from the results

of the linear and GARCH regression models that identify cryptocurrencies as safe-haven assets

for bonds and gold. Moreover, these findings support prior research indicating that cryptocurren-

cies can serve as safe-havens during periods of extreme market volatility (Ji, Bouri, Gupta, and

Roubaud, 2018; Jiang, Wu, Tian, and Nie, 2021).
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[Table 4]

5 Discussion

From the estimated results of linear and time-varying coefficient models, it is evident that the rela-

tionship between cryptocurrencies and other assets can change over time, particularly in response

to market conditions. The focus should not be on whether cryptocurrencies are hedge assets at

a particular point but rather on how the movements of these assets have changed due to market

shocks, which specific shocks have altered their relationship, and the nature of this change. During

the turbulent period of COVID-19 (mid-2020 to the end of 2021), cryptocurrencies lost their hedg-

ing capability against stocks. During this period, they exhibited a positive correlation, which can

be attributed to the bullish state of both markets. Cryptocurrencies experienced hyper-exponential

growth accompanied by excessive volatility, while stock prices exhibited a steep upward trend.

Both the stock and cryptocurrency markets were affected by the same shock, namely, the increased

uncertainty driven by COVID-19. The rise in cryptocurrency prices can be attributed to spec-

ulative factors stemming from the panic surrounding COVID-19, as confirmed by Goodell and

Goutte (2021), who found a strong connection between increased Bitcoin prices and COVID-19-

related deaths. Starting in early 2022, when both markets entered a simultaneous bearish phase,

the strength of their association weakened as the impact of the COVID-19 shock dissipated. Con-

sequently, cryptocurrencies appear to have regained their roles as hedging instruments. These

findings can be attributed to the fact that market shocks to stock prices and cryptocurrencies are

driven by various factors related to uncertainty (Bouri, Gupta, Tiwari, and Roubaud, 2017). Wen,

Tong, and Ren (2022) utilize time-varying parameter vector autoregression (TVP-VAR) to explore

hedging ability by examining changes in impulse response during the COVID-19 downturn be-

tween stocks and cryptocurrencies. They claim a consistent positive spillover without hedging
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capabilities throughout the sample period (mid-2019 to mid-2021), which contradicts the reality

that cryptocurrencies, particularly Bitcoin, have experienced super-exponential growth since mid-

2020, in contrast to the relatively stable market prior to mid-2020.

However, the COVID-19 pandemic has triggered a surge in gold purchases and prices due to

its widely recognized function as a store of value (Akhtaruzzaman, Boubaker, Lucey, and Sensoy,

2021). The popularity of gold as an investment contributed to this increase. However, the estimated

time-varying coefficients for the gold market indicate significant variations in the relationships be-

tween stocks, cryptocurrencies, and gold. For instance, from mid-2020 to mid-2021, when the

stock and cryptocurrency markets exhibited a positive correlation, cryptocurrencies such as ETH,

BNB, LINK, and EOS had either no or negative relationships with gold. This suggests that the

correlation between cryptocurrencies and stocks may have the opposite effect on the relationship

between gold and stocks. Consequently, the hedging behavior for specific coins varies significantly

during the sampling period, which can destabilize the financial market.

Our study complements the work of Conlon and McGee (2020), who consider a structural

break by artificially determining the duration of the COVID-19 period to test dynamic hedging

behavior. In contrast, we capture smoothly changing parameters using semi-parametric methods,

enabling us to investigate smooth changes over the entire sample period and provide reliable infor-

mation for long-term investors while considering a rich data period. This approach is particularly

advantageous for cryptocurrencies, which often exhibit high transaction costs and illiquidity. Fur-

thermore, our study expands on the work of Shahzad, Bouri, Roubaud, and Kristoufek (2020), who

solely focus on changes in the hedge ratio over time through conditional variance without allowing

for time-varying behavior in the return equation and considering the constancy of hedging ability.

They argue that Bitcoin is a poor hedging instrument against US stocks, whereas our findings in-

dicate that the potential hedging power of Bitcoin is likely to change over periods. These findings

have practical implications for policymakers and risk managers.
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6 Conclusion

This study provides valuable insights into the hedging behavior of cryptocurrencies in relation

to traditional assets such as stocks, bonds, and gold. By applying various econometric models,

including linear regression, GARCH regression, and a semi-parametric model with time-varying

coefficients, we examine the dynamic nature of the relationship between cryptocurrencies and these

assets. Our findings highlight that the relationship between cryptocurrencies and stocks can vary

over time, particularly during market shocks, such as the COVID-19 pandemic. While cryptocur-

rencies initially lost their hedging capability for stocks during the pandemic’s turbulent period,

they regained their role as hedging instruments as market conditions stabilized. This suggests that

the impact of market shocks and the factors driving uncertainty play crucial roles in shaping the

correlation between cryptocurrencies and stocks.

Furthermore, our analysis reveals intriguing patterns in the relationship between cryptocur-

rencies and gold. The correlation between cryptocurrencies and stocks influences the correlation

between cryptocurrencies and gold. During certain periods, cryptocurrencies exhibit no relation-

ship with gold, indicating a potential diversification benefit. However, the hedging behavior of

specific cryptocurrencies can vary significantly, underscoring the need for careful consideration of

market conditions and individual characteristics of different coins. Our study contributes to the

existing literature by employing semi-parametric methods that capture smoothly changing param-

eters over an entire sample period. This approach enables us to provide more reliable information

for long-term investors and policymakers, particularly when considering the unique characteristics

of cryptocurrencies, such as transaction costs and illiquidity.

The practical implications of our findings extend to risk managers and policymakers who seek

to understand the role of cryptocurrencies in portfolio diversification and risk management strate-

gies. Our results demonstrate that the hedging power of cryptocurrencies is not constant but
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develops with the dynamic market conditions. Therefore, a dynamic approach to incorporating

cryptocurrencies into investment portfolios is necessary to fully leverage their potential benefits.

Although our study sheds light on the hedging behavior of cryptocurrencies, it is important to

acknowledge its limitations. Future research could explore additional factors influencing the re-

lationship between cryptocurrencies and traditional assets, such as macroeconomic indicators or

regulatory changes. Additionally, a deeper investigation into the implications of transaction costs

and illiquidity in cryptocurrency markets would further enhance our understanding of their roles

as hedging instruments.
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Table 1: Descriptive statistics

BTC ETH BNB LTC LINK BCH XMR EOS STOCK BOND GOLD
Mean 0.002 0.003 0.005 0.001 0.002 -0.001 0.002 -0.001 0.000 0.000 0.000
Std. Dev. 0.049 0.077 0.084 0.071 0.083 0.079 0.077 0.079 0.011 0.031 0.009
Skewness -0.116 -2.611 1.765 1.096 -0.086 0.059 0.520 -0.133 -0.845 0.280 -0.271
Kurtosis 15.198 57.828 43.678 21.085 8.611 11.187 13.303 9.844 20.169 33.931 6.322
JB test 15654.7 243931.6 98503.7 34900.2 1808.0 3963.6 10040.4 2802.7 31299.2 100650.5 1191.4
(p-value) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Q(5) 16.322 8.4598 41.899 13.582 10.58 10.716 20.365 12.776 73.925 68.049 5.398
(p-value) (0.006) (0.133) (0.000) (0.018 (0.032) (0.057) (0.001) (0.026) (0.000) (0.000) (0.249)
ARCH(5) 18.919 41.455 9.915 23.874 15.336 22.636 50.079 14.066 282.201 500.392 18.023
(p-value) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Obs. 2524 1930 1418 2524 1377 1419 2247 1434 2524 2524 2524

Notes: This table provides descriptive statistics for the data. The table, denotes the Jarque–Bera normality
test, Q(p) is the Ljung-Box test for white noise with lag order p, and ARCH (p) is Engle’s (1982) LM test
for the ARCH effects with lag order p. The numbers in parentheses are the p-values for the test statistics.
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Table 2: Estimation results of the linear regression model

BTC ETH BNB LTC LINK BCH XMR EOS
α 0.0026∗∗ 0.0037∗∗ 0.0058∗∗ 0.0015 0.0036 -0.0006 0.0026 -0.0012

(0.0011) (0.0018) (0.0030) (0.0017) (0.0025) (0.0024) (0.0017) (0.0023)
β1 0.3788∗∗∗ 0.6704∗∗∗ 1.0886∗∗∗ 0.5701∗∗∗ 1.0934∗∗∗ 0.7216∗∗∗ 0.5435∗∗∗ 0.8569∗∗∗

(0.1069) (0.2369) (0.1806) (0.1616) (0.2281) (0.2216) (0.1664) (0.2038)
δ1 0.0074 0.0115 -0.0113 -0.0194 -0.0361 0.0502 0.0187 -0.0083

(0.0415) (0.0646) (0.0589) (0.0526) (0.0732) (0.0623) (0.0662) (0.0677)
γ1 0.2356 0.4050 0.2858 0.1118 0.2415 0.4184 0.3652 0.7722∗∗∗

(0.1503) (0.3318) (0.2764) (0.2177) (0.2843) (0.2871) (0.2403) (0.2906)
β2(0.05) 0.5175∗ 0.6893 -0.1815 0.5018 0.9567∗∗ 0.7614∗ 0.5352∗ 0.2940

(0.2701) (0.4017) (0.4302) (0.3579) (0.4269) (0.4436) (0.2979) (0.4734)
β2(0.01) 0.9843∗∗ 1.1469∗∗ 1.3824∗∗ 0.8053 0.9272 0.4728 1.1837∗∗∗ 0.8757

(0.4022) (0.5154) (0.6200) (0.5022) (0.6563) (0.6553) (0.4529) (0.5771)
δ2(0.05) -0.0020 -0.2483 -0.0855 -0.0935 -0.2595∗ -0.2294 -0.1874 -0.0919

(0.1041) (0.1607) (0.1273) (0.1510) (0.1485) (0.1422) (0.1721) (0.1395)
δ2(0.01) -0.2325 -0.0160 -0.0007 -0.0231 0.0640 0.0138 -0.0375 -0.0134

(0.1441) (0.1774) (0.1660) (0.1831) (0.1709) (0.1961) (0.2166) (0.1667)
γ2(0.05) -0.2128 0.0452 0.4819 -0.4911 0.4003 -0.1193 0.2386 -0.5158

(0.3666) (0.5212) (0.5370) (0.5163) (0.6401) (0.5511) (0.5037) (0.6190)
γ2(0.01) 0.5170 0.5181 0.4388 1.0521∗∗ 0.0172 1.0514 -0.1583 0.9355

(0.4199) (0.5376) (0.5895) (0.5013) (0.7753) (0.6456) (0.6605) (0.6389)
AIC -3.2490 -2.3197 -2.1564 -2.4618 -2.2122 -2.2832 -2.3268 -2.2884
SIC -3.2259 -2.2908 -2.1193 -2.4387 -2.1743 -2.2462 -2.3014 -2.2517
Log L. 4110.2 2248.5 1538.9 3116.8 1533.1 1629.9 2624.2 1650.8

Notes: Rc,t = α + β1Rs,t + δ1Rb,t + γ1Rg,t + β2Rs,t(τ) + δ2Rb,t(τ) + γ2Rg,t(τ) + ϵt. Where Rc,t, Rs,t, Rb,t and
Rg,t denote returns on a cryptocurrency, stock, bond, and gold prices, respectively. Rs,t(τ), Rb,t(τ) and Rg,t(τ)

account for crashes in the stock, bond, and gold markets, respectively. These can be defined as returns less
than τ quantile (τ = 0.05 and 0.01). The robust standard deviations are given in parentheses. ***, **, and *
represent levels of significance at the 1%, 5% and 10%, respectively.
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Table 3: Estimation results of the GARCH regression model

BTC ETH BNB LTC LINK BCH XMR EOS
α 0.0014 0.0013 0.0014 -0.0007 0.0021 -0.0026 0.0014 -0.0027

(0.0008) (0.0014) (0.0013) (0.0011) (0.0020) (0.0016) (0.0013) (0.0019)
β1 0.4236∗∗∗ 0.9784∗∗∗ 0.8862∗∗∗ 0.5231∗∗∗ 1.1284∗∗∗ 0.9084∗∗∗ 0.4548∗∗∗ 0.9522∗∗∗

(0.0947) (0.1540) (0.1397) (0.1267) (0.1744) (0.1557) (0.1432) (0.1574)
δ1 0.0175 0.0910 0.0046 0.0245 -0.0176 0.0727 0.0594 0.0288

(0.0350) (0.0596) (0.0548) (0.0493) (0.0675) (0.0625) (0.0527) (0.0640)
γ1 0.3185∗∗ 0.4476∗ 0.5021∗∗∗ 0.1295 0.2543 0.5639∗∗ 0.5040∗∗ 0.5990∗∗

(0.1258) (0.2479) (0.1936) (0.1620) (0.2954) (0.2396) (0.2147) (0.2579)
β2(0.05) 0.3561 0.3272 0.1514 0.3556 0.6968 0.3991 0.3796 0.0179

(0.3001) (0.3815) (0.3494) (0.3847) (0.4256) (0.4273) (0.3139) (0.4154)
β2(0.01) 1.1897∗∗ 1.2079∗ 1.2535∗ 1.0981∗∗ 1.1428 0.7627 1.4653∗∗ 1.1408

(0.5293) (0.6711) (0.6552) (0.5576) (1.0262) (0.8465) (0.5938) (0.7697)
δ2(0.05) 0.0407 -0.1590 -0.0557 0.0209 -0.1900 -0.1247 -0.1577 -0.0968

(0.1052) (0.1302) (0.1099) (0.1322) (0.1374) (0.1386) (0.1194) (0.1246)
δ2(0.01) -0.3044∗ -0.1993 -0.0747 -0.2097 0.0186 -0.1092 -0.0856 -0.0606

(0.1563) (0.1842) (0.2020) (0.1708) (0.2105) (0.2370) (0.1700) (0.1807)
γ2(0.05) -0.1421 0.3883 0.2059 -0.3252 0.2057 -0.4409 -0.2018 -0.6059

(0.2525) (0.4693) (0.5385) (0.3329) (0.5584) (0.5509) (0.4297) (0.6678)
γ2(0.01) 0.3878 0.3189 0.5329 1.0997∗∗ 0.2033 1.1610 0.6564 1.2734∗

(0.3418) (0.6362) (0.6334) (0.5117) (0.8714) (0.7982) (0.5468) (0.7328)
c0 0.0001∗∗∗ 0.0003∗∗∗ 0.0001∗∗ 0.0002∗∗ 0.0002∗∗ 0.0001∗∗ 0.0002∗∗∗ 0.0001

(0.0000) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)
c1 0.1126∗∗∗ 0.1349∗∗∗ 0.1517∗∗∗ 0.1073∗∗∗ 0.0999∗∗∗ 0.0845∗∗∗ 0.1188∗∗∗ 0.0589∗∗∗

(0.0207) (0.0261) (0.0428) (0.0253) (0.0220) (0.0218) (0.0379) (0.0228)
c2 0.8497∗∗∗ 0.7997∗∗∗ 0.8353∗∗∗ 0.8441∗∗∗ 0.8789∗∗∗ 0.8934∗∗∗ 0.8594∗∗∗ 0.9239∗∗∗

(0.0257) (0.0221) (0.0374) (0.0294) (0.0273) (0.0250) (0.0410) (0.0306)
AIC -3.4495 -2.6742 -2.7580 -2.7301 -2.3711 -2.5371 -2.5624 -2.4857
BIC -3.4194 -2.6367 -2.7098 -2.7001 -2.3217 -2.4889 -2.5293 -2.4379
Log L. 4366.2 2593.6 1968.4 3458.4 1645.5 1813.0 2891.8 1795.2

Notes: Rc,t = α + β1Rs,t + δ1Rb,t + γ1Rg,t + β2Rs,t(τ) + δ2Rb,t(τ) + γ2Rg,t(τ) + ϵt. h2
t = c0 + c1ε

2
t−1 + c2h2

t−1.
Where Rc,t, Rs,t, Rb,t and Rg,t denote returns on a cryptocurrency, stock, bond, and gold prices, respectively.
Rs,t(τ), Rb,t(τ) and Rg,t(τ) account for crashes in the stock, bond, and gold markets, respectively. These can
be defined as returns less than τ quantile (τ = 0.05 and 0.01). The robust standard deviations are given in
parentheses. ***, **, and * represent levels of significance at the 1%, 5% and 10%, respectively.
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Table 4: Estimation results of the semi-parametric models

BTC ETH BNB LTC LINK BCH XMR EOS
β2(0.05) 0.8585∗∗∗ 2.0872∗∗∗ 1.2034∗∗∗ 0.9235∗∗∗ 2.2504∗∗∗ 1.2353∗∗∗ 0.8332∗∗∗ 0.3677

(0.2566) (0.3767) (0.3560) (0.3234) (0.3867) (0.3790) (0.2640) (0.4524)
β2(0.01) 0.0902 0.1012 0.1230 0.0932 0.0881 -0.0099 0.4126∗∗ 0.3058

(0.1154) (0.1798) (0.1385) (0.1447) (0.1711) (0.1687) (0.1696) (0.1976)
δ2(0.05) 1.3509∗∗∗ 1.5024∗∗ 1.2297∗ 1.4041∗∗∗ 0.9285 1.2007 1.8279∗∗∗ 1.6412∗∗

(0.4794) (0.6883) (0.7329) (0.5211) (0.8596) (0.8128) (0.6019) (0.7566)
δ2(0.01) -0.6748∗∗∗ 0.9048∗∗ 0.9420∗∗ -0.8559∗∗∗ 1.6554∗∗∗ -0.0239 -0.6214∗ 0.5455

(0.2319) (0.4528) (0.4686) (0.3276) (0.6284) (0.5343) (0.3740) (0.6400)
γ2(0.05) -0.1522∗ 0.1426 -0.2575∗∗ -0.1376 -0.1829 0.0154 -0.1206 -0.2105∗

(0.0907) (0.1244) (0.1025) (0.1195) (0.1146) (0.1501) (0.1102) (0.1184)
γ2(0.01) 0.9996∗∗∗ 0.7876 0.9066 1.3807∗∗∗ 0.0346 0.9804 1.2730∗∗∗ 1.4526∗

(0.3088) (0.6972) (0.5876) (0.3956) (0.9357) (0.7060) (0.4856) (0.7526)

Notes: Rc,t = α+ β1(t/T )Rs,t + δ1(t/T )Rb,t +γ1(t/T )Rg,t + β2Rs,t(τ) + δ2Rb,t(τ) +γ2Rg,t(τ) + ϵt. Where Rc,t, Rs,t,

Rb,t and Rg,t denote returns on a cryptocurrency, stock, bond, and gold prices, respectively. Rs,t(τ), Rb,t(τ) and

Rg,t(τ) account for crashes in the stock, bond, and gold markets, respectively. These can be defined as returns

less than τ quantile (τ = 0.05 and 0.01). ***, **, and * represent levels of significance at the 1%, 5% and

10%, respectively. The numbers in parentheses are standard errors.
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Figure 1: Time series variables of levels and returns
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Figure 2: Time series variables of levels and returns (continue)
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Figure 3: Time series variables of levels and returns (continue)

2
0
0
0

3
0
0
0

4
0
0
0

2014 2016 2018 2020 2022

(a) Stock level
−

0
.1

0
−

0
.0

5
0
.0

0
0
.0

5
0
.1

0

2014 2016 2018 2020 2022

(b) Stock return

1
0

2
0

3
0

4
0

2014 2016 2018 2020 2022

(c) Bond level

−
0
.2

0
.0

0
.2

0
.4

2014 2016 2018 2020 2022

(d) Bond return

1
2
5
0

1
5
0
0

1
7
5
0

2
0
0
0

2014 2016 2018 2020 2022

(e) Gold level

−
0
.0

6
−

0
.0

3
0
.0

0
0
.0

3

2014 2016 2018 2020 2022

(f) Gold return

35



Figure 4: Semi-parametric varying-coefficients partial linear models for Stock
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Notes: The solid line represents the estimated coefficients, and the dashed lines represent the corresponding

95% confidence bands. Wild bootstrap method is used to estimate standard errors.
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Figure 5: Semi-parametric varying-coefficients partial linear models for Bond
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Notes: The solid line represents the estimated coefficients, and the dashed lines represent the corresponding

95% confidence bands. Wild bootstrap method is used to estimate standard errors.

37



Figure 6: Semi-parametric varying-coefficients partial linear models for Gold
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Notes: The solid line represents the estimated coefficients, and the dashed lines represent the corresponding

95% confidence bands. Wild bootstrap method is used to estimate standard errors.

38


