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In the era of rapid globalization and digitalization, accurate identification of similar stocks has become
increasingly challenging due to the non-stationary nature of financial markets and the ambiguity in
conventional regional and sector classifications. To address these challenges, we propose SimStock, a
novel temporal self-supervised learning framework that combines techniques from self-supervised learning
(SSL) and temporal domain generalization to learn robust and informative representations of financial
time series data. SimStock introduces a dimension corruption method that integrates temporal patterns
into the corruption process, enabling the model to learn representations that are resilient to noise and
non-stationarity. The primary focus of our study is to understand the similarities between stocks from
a broader perspective, considering the complex dynamics of the global financial landscape. We conduct
extensive experiments on four real-world benchmarks with thousands of stocks and demonstrate the
effectiveness of SimStock in finding similar stocks, outperforming existing methods in both same exchange
and different exchange scenarios. The practical utility of SimStock is showcased through its application
to various investment strategies, such as pairs trading, index tracking, and portfolio optimization, where
it leads to superior performance compared to conventional methods. Our findings empirically examine the
potential of data-driven approach to enhance investment decision-making and risk management practices
by leveraging the power of temporal self-supervised learning in the face of the ever-changing global
financial landscape.
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1. Introduction

The identification of similar stocks is a crucial task in finance, with far-reaching implications for
portfolio diversification, risk management, and investment strategy. Traditionally, the similarity
between stocks has been determined based on factors such as sector classification, geographical
location, and market capitalization. However, in the era of rapid globalization and digitization, these
conventional approaches have become increasingly inadequate in capturing the complex dynamics of
the global financial landscape. The rapid pace of globalization has led to the emergence of intricate
relationships among companies across different sectors and regions. Multinational corporations
now operate in multiple countries, blurring the lines between traditional sector classifications.
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Additionally, the rise of digital technologies has given birth to new industries and business models
that transcend geographical boundaries. As a result, the similarities between stocks can no longer be
accurately captured by relying solely on regional or sector-based classifications. Moreover, the non-
stationary nature of financial markets poses significant challenges to the identification of similar
stocks. The statistical properties of financial time series, including returns and correlations, are
subject to change over time, a phenomenon known as concept drift or temporal shift (Lu et al.
2018, Bai et al. 2022). Consequently, similarity measures based on historical data may become
unreliable and fail to capture the evolving dynamics of the market.

Recent advances in deep learning-based methods in finance domain have shown promise in pre-
dicting the desired parameters from the given data (Zhang et al. 2020). However, financial time
series data presents unique challenges. The parameters of interest, such as returns, are not only
difficult to predict due to the presence of excessive noise, but also the labels that can help the model
extract hidden patterns in the data are often not well-defined. Moreover, the complex interactions
among various financial assets and the impact of external factors, such as macroeconomic variables
and market sentiment, further complicate the estimation process.

One promising solution to tackle these challenges is to leverage representation learning techniques
to extract meaningful embeddings from unlabeled financial time series data, taking into account for
temporal distribution shifts. By learning robust and informative representations, we can capture the
complex relationships between different assets and exploit the inherent structure in the data. Self-
supervised learning (SSL) has emerged as a powerful paradigm for learning such representations
from unlabeled data, with successful applications in various domains, including computer vision
(Chen et al. 2020, He et al. 2020) and natural language processing (Devlin et al. 2018, Yang et al.
2019). SSL enables the model to learn meaningful representations by solving pretext tasks that do
not require explicit labels, making it particularly suitable for scenarios where labeled data is scarce
or expensive to obtain. However, while these methods are suitable for exploiting inductive biases
in the data used in any domain, they are not yet suitable for financial time series data.

Also, the application of SSL to financial time series data presents unique challenges. Time
series data exhibits distinct characteristics, such as seasonality, trend, and interaction between
stocks, which require careful consideration when designing SSL frameworks. Furthermore, the non-
stationary nature of financial markets necessitates the development of techniques that can adapt
to distribution shifts and generalize well to future time periods. Most existing SSL methods focus
on learning invariant representations (Chen et al. 2020, He et al. 2020), assuming that the data
distribution remains stationary. However, this assumption does not hold in the context of financial
markets, where the underlying dynamics can change over time.

To address these challenges, we propose a novel methodology called Temporal self-supervised
learning, which combines techniques from SSL and the field of temporal domain generalization. Our
approach aims to learn general model representations that can adapt to temporal shifts over time,
thereby enhancing the accuracy and robustness of financial parameter estimation using learned
embeddings. By incorporating temporal domain generalization into the SSL framework, we enable
the model to learn representations that are not only informative but also resilient to distribution
shifts.

The main contributions of this paper are as follows:

• We propose a novel temporal Self-Supervised Learning framework, SimStock, that combines
SSL with temporal domain generalization to learn robust and informative representations
of financial time series data. SimStock leverages the power of SSL to capture the complex
relationships between different financial assets while accounting for temporal shifts in the data
distribution.

• We introduce a novel corruption method for SSL of stock data, termed dimension corruption,
which integrates temporal patterns into the corruption process. By corrupting the input data
along different dimensions, such as time, asset, and feature, SimStock learns representations
that are robust to noise and non-stationarity in the data.
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• We conduct extensive experiments on four real-world benchmarks with thousands of stocks
to demonstrate the effectiveness of SimStock in finding similar stocks. Our results show that
SimStock achieves state-of-the-art performance, outperforming existing methods in terms of
accuracy and robustness. We showcase the practical utility of SimStock in simplifying the
process of screening potential investment opportunities.

• We demonstrate the practical utility of SimStock in various financial applications, including
pairs trading, index tracking, and portfolio optimization. We show that using the similar stocks
identified by SimStock leads to superior performance compared to conventional methods in
these applications, highlighting the potential of our approach to enhance investment strategies
and risk management.

2. Related work

This section explores relevant research in two key areas: Self-Supervised Learning (SSL) for time-
series data and the estimation of financial parameters from historical data. We discuss the challenges
and limitations of applying SSL techniques to time series and review various approaches aimed at
improving the robustness and accuracy of parameter estimation in finance.

2.1. Self-supervised learning for time-series data

Self-Supervised Learning (SSL) has emerged as a promising paradigm for learning robust and
generalizable representations from unlabeled data, with successful applications in both computer
vision and natural language processing (NLP) (Chen et al. 2020, Jing and Tian 2020, Zhai et al.
2019, Lee et al. 2019, Qiu et al. 2020, Ruder and Plank 2018, Song et al. 2020). SSL methods
aim to overcome the limitations of traditional supervised learning, which requires large amounts
of manually labeled data and can produce models that are brittle and sensitive to small variations
in the input.

First and foremost, in the field of NLP, Self-Supervised Learning (SSL) methods, such as BERT
(Devlin et al. 2018), GPT (Radford et al. 2019), and their variants (Mann et al. 2020, Touvron
et al. 2023, Jiang et al. 2024), have achieved state-of-the-art results earlier than in other fields by
pre-training on large corpora of unlabeled text data to learn to predict masked words or generate
realistic text sequences. One reason for the success of SSL in NLP is the abundance of unlabeled
text data. Later, SSL techniques were proposed to learn useful visual features by solving pre-
tasks on unlabeled images, such as predicting the relative positions of image patches or identifying
distorted versions of an image, in order to alleviate the label requirements and enable powerful
feature extraction in computer vision as well (Wei et al. 2022, Fang et al. 2022). This series of
processes is not only due to the abundance of unlabeled text data in NLP, but also because language
data is discrete and structured (i.e., words), while image data is high-dimensional, continuous, and
amorphous, as discussed by (He et al. 2020), the success of SSL methodologies in NLP followed by
success in computer vision is a natural result.

In the temporal domain, recent research on the SSL method has predominantly concentrated
on video understanding (Jenni et al. 2020) or action classification (Qian et al. 2021). Video-based
data is particularly suitable for SSL approaches because of the high correlation between frames,
despite its temporal nature. Also, the temporal coherence and continuity present in videos provide
a rich source of information that can be exploited to learn meaningful representations without
the need for extensive manual labeling. Therefore, methodologies used in computer vision, such
as contrastive learning and predictive modeling, can be easily adapted to the video domain. For
instance, recent research leverage SSL techniques to learn patch-level (Yun et al. 2022, Caron
et al. 2021) or region-level (Xiao et al. 2021) representations from videos. These approaches aim
to capture the inherent structure and relationships within video frames, enabling the learning
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of meaningful features without relying on explicit labels. By exploiting the temporal coherence
and spatial consistency present in videos, these self-supervised methods can discover emergent
properties and capture rich semantic information.

However, limited research has been conducted regarding the application of such techniques to
financial data reflecting its temporal characteristics. One of the main reasons for this is the challenge
of generating different views (both positive and negative), which play a key role in self-supervised
representation in non-stationary time-series data. in the case of stock data, it is not straightforward
to generate meaningful positive and negative views that capture the inherent temporal dependencies
and preserve the essential characteristics of the original time series. Unlike images or text, where
various augmentation techniques can be applied to create different views (e.g., cropping, flipping,
masking or word substitution) without significantly altering the core information, financial time
series data is highly sensitive to temporal order and contextual relationships. Previous studies
have applied various methods to generate views for time series data in order to solve this problem.
(Yue et al. 2022) utilized timestamp masking and random cropping, while (Choi and Kang 2023)
employed scaling and permutation techniques. However, these approaches may not be suitable for
time series data that require fine-grained representations.

Next, multivariate time series, which are common in most time series data, present a unique
challenge for Self-Supervised Learning (SSL) methods. Although these time series contain multi-
ple dimensions, the relevant and informative patterns are often confined to a limited number of
dimensions. Consequently, directly applying SSL techniques that have been successful with other
data types to extract meaningful information from time series data becomes difficult, as the sparse
nature of useful information in multivariate time series hinders the effectiveness of these methods.

Third, time series data possess distinct characteristics, including seasonality, trend, and frequency
domain information (Wen et al. 2020, Wu et al. 2021a). Considering how SSL works, in sequential
data, the hidden patterns of the data are used based on the ”current time” that the data is
being learned. In other words, this assumes that these characteristics will apply the same in the
future. However, the non-stationary nature of time series data poses a significant challenge for SSL
methods. The underlying patterns and relationships in the data can change over time, leading to a
phenomenon known as concept drift or temporal shift. This means that the representations learned
by SSL methods based on historical data may not generalize well to future time periods. To address
this issue, techniques from the field of Domain Generalization (DG) can be employed. DG aims to
learn general model representations that can adapt to temporal shifts over time. To improve the
generalization ability of the model when there is temporal change, methodologies such as DRAIN
(Bai et al. 2022) have been proposed, but they are only applicable to supervised learning.

2.2. Parameter estimation in non-stationary financial markets

In the field of investment management, estimating future returns and risk is a fundamental challenge
due to the inherent uncertainty and non-stationary nature of financial markets. Traditionally,
researchers and practitioners have relied on historical financial data to estimate various parameters,
such as expected returns, volatility, and covariance matrices, which are crucial inputs for portfolio
optimization, risk management, and asset pricing models.

One common approach is to use a rolling window of historical returns to estimate the expected
returns and covariance matrix of a set of assets. For instance, in the classic mean-variance portfolio
optimization (MVO) framework proposed by (Markowitz 1952), the optimal portfolio weights are
determined based on the estimated expected returns and covariance matrix using a sample of
historical returns. However, an inherent drawback of MVO is the high sensitivity of the optimal
portfolio to estimation errors in the input parameters, particularly in the expected returns (Chopra
and Ziemba 2013, Chung et al. 2022). Small changes in the estimated expected returns can lead to
significant shifts in the optimal portfolio weights, resulting in portfolios that may be suboptimal or
unstable out-of-sample. Similarly, the Capital Asset Pricing Model (CAPM) (Sharpe 1964, Lintner
1975) and the Fama-French factor models (Fama and French 1993, 2015) rely on historical data to
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estimate the beta coefficients and factor premiums.
However, using historical data for parameter estimation has several limitations. First, financial

markets are known to exhibit non-stationarity, meaning that the statistical properties of the data,
such as the mean and variance, can change over time (Cont 2001, Lo 2017). This implies that the
estimates based on historical data may not be representative of the future. Second, the sample size
of historical data is often limited, leading to estimation errors and potential over-fitting (Kan and
Zhou 2004, 2007).

To mitigate these issues, researchers have proposed various techniques to improve the robustness
and accuracy of parameter estimation. One popular approach is the shrinkage method, which
combines the sample estimates with a structured estimator to reduce the estimation error (Ledoit
and Wolf 2003, 2004b,a) Another technique is the use of robust estimators, such as the minimum
covariance determinant (MCD) estimator (Rousseeuw and Driessen 1999) and the minimum volume
ellipsoid (MVE) estimator (Van Aelst and Rousseeuw 2009), which are less sensitive to outliers
and heavy-tailed distributions. More recently, (Gerber et al. 2021) proposed the Gerber statistic
for estimating the covariance matrix between assets, a robust co-movement measure that extends
Kendall’s Tau by counting the proportion of simultaneous co-movements when their amplitudes
exceed data-dependent thresholds, capturing meaningful co-movements while being insensitive to
extreme values and noise.

In addition to these techniques, researchers have also explored various approaches to extrapolate
past data and model future market dynamics. For example, (Barberis 2000) proposed a Bayesian
approach that combines the sample estimates with prior beliefs about the asset returns to improve
the out-of-sample performance of portfolio optimization. (Rapach et al. 2010) employed combi-
nation forecasts, which aggregate individual forecasts based on different predictors, to enhance
the accuracy of out-of-sample stock return predictions. Also, (Welch and Goyal 2008) found that
the historical average excess return of stocks over bonds, which is often used as an estimate of
the equity premium, is sensitive to the choice of the sample period and the assumptions about
survivorship bias. Moreover, they showed that this historical average is a poor predictor of future
returns, as the equity premium exhibits substantial time-variation and mean-reversion.

Despite these advancements, the fundamental challenge of estimating future returns and risk
from historical data remains. The assumption that future behavior will be similar to the past is
often violated in practice, as financial markets are subject to regime shifts, structural breaks, and
extreme events (Ang and Bekaert 2002, Guidolin and Timmermann 2007).

3. SimStock

We propose SimStock, which is graphically illustrated in Figure 1. A key distinguishing character-
istic of our framework, setting it apart from prior research, is its utilization of stock augmentation
and temporal domain generalization techniques specifically designed to capture the dynamic nature
of stock data.

3.1. Preliminary

We consider a self-supervised task where the stock data distribution evolves over time. In the train-
ing phase, we are given T observed source domains D1:T = {D1 ,D2 , ...,DT}, which are sampled
from distributions at T different time points t1 ≤ t2 ≤ ... ≤ tT . Each source domain is denoted
as Ds = {xsi , csi}

Ns

i=1, for s = 1, 2, ...,T , where xs ∈ Rdm represent the dm-dimensional temporal
features, cs ∈ Rdn is dn-dimensional static metadata, and Ns is the sample size at timestamp ts.
We have omitted the sample index i for simplicity. The model will only be tested on a target
domain in the future, i.e., DT+1 where tT+1 ≥ tT .

Our goal is to proactively capture the drift from temporal domains to find stock representations
that are robust with respect to temporal distribution shifts. We presume that the representation
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Figure 1. The proposed model (SimStock) combines self-supervised learning framework with temporal domain gen-
eralization for stock representations.

model, denoted as fθs , is characterized by a deep neural network with function parameters θs at
timestamp ts. Consequently, we can get the representation embedding zs = fθs(x

s, cs), where zs
represent both temporal and static features of stock data. In the next section, we show that the
representation model serves as a mapping function during training, which predicts the dynamics
across the parameter θ1:T = {θ1, θ2, .., θT } at each domain Ds.

3.2. Training Dynamics of Temporal Domain Generalization

We are motivated by DRAIN (Bai et al. 2022), which first proposed the concept of temporal domain
generalization. In each temporal domain Ds, the representation network fθs can be trained by
maximizing the conditional probability P(θs|Ds). Here, θs signifies the state of the model parameters
at timestamp ts. Given the dynamic nature of Ds, the conditional probability P(θs|Ds) will also
change over time. The objective in the context of temporal domain generalization is to estimate
θT+1 utilizing all the training data from D1 :T . From a probabilistic perspective, we can express
this as:

P(θT+1|D1:T ) =

∫
Ω
P(θT+1|θ1:T ,D1:T ) · P(θ1:T |D1:T )dθ1:T , (1)

where Ω denotes the space for model parameters θ1:T . In Eq. 1, the first term inside the integral
P(θT+1|θ1:T ,D1:T ) represents the inference phase, which is the process of predicting the future
state of the target representation network (i.e., θT+1) given all historical states (i.e., θ1:T ,D1:T ).
The second term P(θ1:T |D1:T ) signifies the training phase, which involves leveraging all training
data D1:T to ascertain the state of the model on each source domain. More specifically, the training
phase can decomposed as follows:

P (θ1:T | D1:T ) =

T∏
s=1

P (θs | θ1:s−1,D1:s)

= P (θ1 | D1)
T∏
s=2

P (θs | θ1:s−1,D1:s) .

(2)

This formula breaks down the training process into T steps, where the first step corresponds to
learning the model parameter on the first domain D1, and each subsequent step corresponds to

6



May 30, 2024 Quantitative Finances output

learning the model parameter on the new domain Ds conditional on parameter statuses from the
history domains and training data, i.e., P (θs | θ1:s−1,D1:s) ,∀s ∈ {2, . . . , T}.

Suppose that we are at time ts. In order to effectively address the temporal drift present across the
domain, the next parameters θs+1 need to be updated on the current and previous domains D1:s.
The main problem is how to actually update θs+1. In this regard, DRAIN introduces a sequential
learning process using LSTM (Hochreiter and Schmidhuber 1997) to describe the stochastic process
of θs. Within the LSTM, each unit gφ defined by its parameters φ is used to generate θs+1 while
taking into consideration the preceding context D1:s and θ1:s. This process is illustrated with yellow
boxes in Figure 1.

3.3. Temporal Representation Learning

Our ultimate goal is to learn a representation model, fθs , which captures the stock data distribution
that evolves over time. To achieve this, we develop an SSL framework for temporal representation
learning of stock data.
Temporal feature variant. Let xs ∈ Rdm be the price feature of a stock, where dm is the

dimension of the feature. The time-varying patterns of stock prices are essential for identifying
short- and long-term characteristics of stocks. To learn more rich representations, the price feature
xs is processed by a temporal transformation module µ. Specifically, the price feature xs is provided
with k variations, denoted as:

µ(xs) = CONCAT(µ1(xs), µ2(xs), ..., µk(x
s)) ∈ Rdmk , (3)

where dmk = dm × k, and each µi : Rdm → Rdm for i ∈ {1, 2, ..., k} is a temporal transformation
function from the collection U . In other words, µ1, µ2, ..., µk ∈ U , where U denotes the collection
of temporal transformations. This module is used to create temporal features that incorporate
various time intervals. For example, µ1(xs) and µ2(xs) would reflect temporal patterns within a
day and a week. Various methods, such as the moving average (Woo et al. 2022, Wu et al. 2021b),
Fourier transform (Zhou et al. 2022), and mixtures of experts (Zhou et al. 2022), can be utilized to
create these temporal features. In this study, we use moving average, which is the most common
choice. More specifically, for each temporal transformation µi, we calculate the moving average of
the price feature xs over a window of size wi:

µi(x
s) =

1

wi

wi−1∑
j=0

xst−j , i = 1, 2, . . . , k. (4)

where wi is the window size for the i-th transformation, and xst−j denotes the price feature at time
t − j in domain s. In our implementation, we use five different window sizes: w1 = 5, w2 = 10,
w3 = 15, w4 = 20, and w5 = 25. These window sizes correspond to weekly, bi-weekly, tri-weekly,
four-weekly, and monthly moving averages, respectively.
Combined embedding with static metadata. In our framework, static metadata cs, which

can include a variety of data such as firm description, 3-statement financial information, and more,
is handled in the static embedding layer. However, for the purpose of this study, we have only
included sector information in cs. As a result, an embedding Embed(cs) ∈ Rdmk is obtained. Next,
we create a combined embedding that incorporates both the temporal feature variant µ(xs) and the
embedded static metadata Embed(cs). The resulting combined embedding is denoted as follows:

Hs = µ(xs) + Embed(cs) ∈ Rdmk . (5)

Feature Tokenizer module. We draw inspiration from the tokenizer approach Gorishniy et al.
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(2021), which transforms input features into token embeddings to obtain more meaningful repre-
sentations. This method Gorishniy et al. (2021) do not reflect the temporal aspect, but we utilize
temporal feature variants in the Feature Tokenizer module to capture the time-varying patterns
in the stock price data. The feature-wise token embeddings TKEsj for a given feature index j are
computed as follows:

TKEsj = bsj + Hs
jW

s
j (6)

where bsj ∈ Rd is the j-th feature bias term and W s
j ∈ Rd is the weight vector for the j-th feature.

Consequently, the token embeddings TKEs ∈ Rdc×d can be obtained by stacking all of the feature
embeddings and adding a special [ST] token, which is known to possess the essence of information
after training. This is represented as:

TKEs = STACK([ST],TKEs1, ...,TKEsdmk
) (7)

where Rdc×d = R(dmk+1)×d denotes the dimension of the combined token embeddings TKEs. There-
fore, the feature tokenizer plays a crucial role in learning meaningful temporal representations by
transforming combined embedding.
Dimension corruption. In self-supervised learning, the main objective is to learn an embedding

space where positive pairs(or views) remain close to each other, while negative pairs(or views) are
far apart. When generating views, mixup (Zhang et al. 2017) or cutmix (Yun et al. 2019) methods
are most commonly used. These methods are suitable for invariant augmentation of static data
(e.g., images), however, these are not suitable for time-series data (e.g., stocks). We generate views
for temporal variants on the same instance, unlike conventional SSL methods that use invariant
augmentation by using different instances together. For time-series data, mixing different sequences
would ruin the entire temporal structure. Therefore, we propose a dimension corruption method
for the augmentation of temporal data.

First, we create positive and negative views, Hs
pos and Hs

neg, by randomly shuffling the dimensions
within the token embeddings TKEs. Here, we define two permutation matrices, Ps

pos and Ps
neg,

both of size d× d. 1

Hs
pos = λTKEs + (1− λ)TKEsPs

pos

Hs
neg = (1− λ)TKEs + λTKEsPs

neg

(8)

In this case, the formula (7) generates positive and negative views for self-supervised learning. The
degree of this perturbation in both views is determined by the mixing parameter λ. With λ > 0.5,
the positive view Hs

pos has minor perturbations, maintaining much of the original token embedding.
The negative view Hs

neg is more altered, with greater dimension shuffling, deviating more from the
original. More specifically, as shown in Figure 2, the positive view corrupted less variation in
temporal features, while the negative view corrupted more variation in temporal features. These
views allow the model to consider the chronological order when obtaining embeddings. We set
λ = 0.7 as the default value in this study.
Representation module. The representation module fθs aims to characterize the shift between

different domains by refining the parameters θs through the process described in Section 3.2. In
order to effectively reflect temporal patterns of corrupted token embeddings (Hs

pos and Hs
neg), we

use the self-attention mechanism (Vaswani et al. 2017). The self-attention mechanism aggregates

1A permutation matrix is a square 0-1 matrix that has exactly one entry of 1 in each row and each column and 0s elsewhere.
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Figure 2. Dimension corruption method for generating positive and negative views from token embeddings (TKEs).
The positive view Hs

pos is created by applying a small perturbation in dimension order to the original TKE, while
the negative view Hs

neg is generated with a larger perturbation in dimension order, preserving more of the original
temporal structure in the positive view compared to the negative view.

corrupted token embeddings with normalized importance as follows:

Attention(Q,K, V ) = Softmax(
QKT

√
d

)V. (9)

Here, Q = Hs
∗WQ ∈ Rd×dk , K = Hs

∗WK ∈ Rd×dk and V = Hs
∗WV ∈ Rd×dv represent queries, keys,

and values, respectively. Note that Hs
∗ represents token embeddings (either positive or negative),

while WQ, WK , and WV are learnable matrices that share weights between positive and negative
token embeddings. The output, which has a dimension of dv, is then transformed back into an
embedding of dimension d through a fully connected layer. Finally, the outputs STsneg and STspos
are obtained.
Triplet loss. For SimStock, we train it to minimize a triplet loss (Balntas et al. 2016), which

is a popular choice in SSL. The key idea behind triplet loss is the use of triplets, each of which
consists of an anchor, and positive and negative views. Here, the anchor is the embeddings for the
unperturbed combined embedding.

For the triplet (STspos, ST
s
neg,H

s), where STspos is the positive view, STsneg is the negative view,
and Hs is the combined embedding (anchor), the triplet loss is defined as follows:

Ltriplet = max(0, sim(Hs, STspos)− sim(Hs, STsneg) + α) (10)

In the above equation, sim(·, ·) denotes a similarity measure (e.g., cosine similarity or Euclidean
distance), and α > 0 is a margin that is introduced to separate positive pairs from negative pairs.
The intuition behind this loss function is that we want to ensure that the anchor point gets closer
to the positive sample than to the negative sample by at least the margin α.
Inference phase. In our framework, the inference phase is particularly important. Unlike most

existing contrastive representation learning studies (Chen et al. 2020, Grill et al. 2020), our model
is specifically designed to be robust with respect to temporal distribution shifts. The inference
phase consists of passing the target domain Ds+1 through the embedding module to obtain the
combined embedding Hs+1 and further processed by the feature tokenizer module to obtain the
token embeddings TKEs+1. The stock representation is then obtained by feeding TKEs+1 into
the representation model fθs+1

, which is updated with the optimal parameters θs+1 generated by
the TDG method described in Section 3.2

9
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4. Experiment

Now we present experiment results to thoroughly demonstrate the performance of SimStock on real-
world benchmark datasets. The source code is available at https://github.com/Yoontae6719/

SimStock-Representation-Model-for-Stock-Similarities

4.1. Implementation details

We present the details of tasks, datasets, baseline models, hyperparameter selection, evaluation
metrics, and the experiment setting.

4.1.1. Tasks. We conduct four main experiments to assess the effectiveness of SimStock in
various financial applications:

• Finding similar stocks: We evaluate how well SimStock can identify stocks that exhibit
similar price movements, compared to baseline methods. This is tested in both same exchange
(finding similar stocks within the same exchange) and different exchanges (finding similar
stocks in a different exchange from the query stock) scenarios.

• Pairs trading: We evaluate the effectiveness of a pairs trading strategy based on the similar
stocks identified by SimStock and baseline models. We form pairs of stocks that are found to
be similar, and then execute a pairs trading strategy.

• Index tracking: Given an ETF as the query, we find a basket of similar stocks using SimStock

and assess the performance of using these stocks for index tracking. The goal is to see if the
selected stocks can closely mimic the returns of the target ETF.

• Portfolio optimization: We investigate whether SimStock embeddings can enhance port-
folio optimization. Specifically, we replace the correlation matrix of stock returns using the
SimStock embedding as a similarity measure for mean-variance portfolio optimization. We
compare the performance of the resulting portfolios with those obtained using conventional
methods for estimating.

4.1.2. Datasets. We collected the daily stock price features(Open, High, Low, Close, and
Volume) and sector information for stocks listed on the NYSE (New York Stock Exchange),
NASDAQ (National Association of Securities Dealers Automated Quotations), SSE (Shanghai
Stock Exchange), SZSE (Shenzhen Stock Exchange), and TSE (Tokyo Stock Exchange) from
Yahoo Finance.

We generate normalized input features describing the trend of a stock on day t. zOpen, zHigh

and zLow represent the comparison values of the opening, highest, and lowest prices, respectively,
relative to the closing price of the same day. Also, zClose and zVolume represent the comparative
values of the closing prices and the volume values compared with day t-1, respectively. Refer to
Table 1 for the formulas used to calculate each feature. In addition, we calculated stock price
features for 5, 10, 15, 20, 25, and 30-day intervals for the temporal feature variant as discussed in
3.3.

Price features Description
zOpen Opent/Closet − 1
zHigh Hight/Closet − 1
zLow Lowt/Closet − 1
zClose Closet/Closet−1 − 1
zVolume Volumet/Volumet−1 − 1

Table 1. Normalized temporal price features.

We use all stocks listed on the NYSE and NASDAQ (4,231 stocks) and refer to them as the
US exchange in our study. For the SSE (1,407 stocks), SZSE (1,696 stocks), and TSE (3,882

10
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stocks), we treat each exchange separately. The training period for all tasks is from January 1,
2018, to December 31, 2021, while the test period spans from January 1, 2023, to December 31,
2023.The reference period for comparison to the test period is January 1, 2022 through December
31, 2022. In other words, we verify whether the stocks identified as similar in the reference set
maintain their similarity in the subsequent one-year test period.

4.1.3. Baseline models. For the task of finding similar stocks, index tracking and pairs trading
task, we compare SimStock with the following baselines:

• Corr1: Calculates the correlation of stock returns using the past one-year returns(i.e., from
January 1, 2022 to December 31, 2022).

• Corr2: Calculates the correlation of stock returns using returns from the beginning of the
test period (i.e., from January 1, 2018 to December 31, 2022).

• Peer: Uses the list of similar stocks provided by Financial Modeling Prep.1

• TS2VEC (Yue et al. 2022): A state-of-the-art method based on self-supervised learning for
finding similar time-series data.

For the portfolio optimization task, we compare the performance of portfolios constructed using
the SimStock similarity matrix with those constructed using the following conventional correlation
matrices:

• Historical covariance matrix(HC)(Jobson and Korkie 1980): The sample correlation ma-
trix of the most recent past stock returns.

• Shrinkage method(SM) (Ledoit and Wolf 2004a): A shrinkage estimator of the covariance
matrix proposed by (Ledoit and Wolf 2004a).

• Gerber statistic(GS) (Gerber et al. 2021): A robust correlation measure that counts the
proportion of simultaneous co-movements between assets when their amplitudes exceed data-
dependent thresholds.

4.2. Can SimStock find similar stocks?

In this section, we explore two distinct scenarios for identifying similar stocks using our proposed
model: the same exchange scenario and the different exchanges scenario. The same exchange sce-
nario focuses on finding similar stocks within the same exchange given a query stock. This approach
allows for the identification of stocks with comparable characteristics and behaviors within a spe-
cific market. On the other hand, the different exchanges scenario involves finding similar stocks
within another exchange given a query stock. This scenario leverages the concept of transfer learn-
ing, where the trained weights of a model from one exchange are applied to stock data from a
different exchange. Transfer learning is a machine learning technique that leverages the knowledge
gained from a model trained on a source task to improve the performance of a model on a related
target task (Pan and Yang 2009). In our study, we apply transfer learning by utilizing a model
trained on one stock exchange (source domain) to identify similar stocks in another exchange (tar-
get domain). For example, models trained on the US exchange can be used to find similar stocks
in the SSE, SZSE, or TSE exchanges. Notice that the query is not restricted to individual stocks.
It can be either sector indices or ETFs.

4.2.1. Evaluation metrics. To evaluate the performance of models in finding similar stocks
compared to other models, we employ two widely used metrics: Correlation and Dynamic Time
Warping (DTW). DTW is a measure for measuring the similarity between two temporal sequences,

1https://site.financialmodelingprep.com/
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allowing for non-linear alignments and capturing the similarities in the overall patterns of stock
price movements (Berndt and Clifford 1994). Consider two time-series sequences X = {x1, ..., xm}
and Y = {y1, ..., yn}. The DTW between X and Y is defined as:

DTW(X,Y ) =

√ ∑
(i,j)∈π

‖xi − yj‖2. (11)

Here, an alignment path π of length K is a sequence of K index pairs (i, j)K , where max(m,n) ≤
K ≤ m + n − 1. Also, ||.|| is the Euclidean distance. DTW uses global path constraints while
comparing two time-series sequences X and Y . That is, the pairs i and j are constrained so that
|i− j| ≤ r, where r is a predefined radius, in the case of the Sakoe–Chiba band.

To assess the effectiveness of our approach in capturing similarities and predicting future stock
behaviors, we evaluate the model’s performance using an out-of-sample period. The dataset used
for inference is the year immediately preceding the out-of-sample period. By finding similar stocks
in the previous year and comparing their performance to the target stock in the out-of-sample
period, we measure the model’s performance using Correlation and Dynamic Time Warping (DTW)
measures. We consider the top 9, 7, 5, 3, and 1 similar stocks (namely, TOP@9, TOP@7, TOP@5,
TOP@3, and TOP@1) for evaluation.

4.2.2. Quantitative evaluation: same exchange scenario. The diagonal plots in Figure
3 and Figure 4 illustrate the performance (Correlation and DTW) of different models in same
exchange scenario. The diagonal plots show that our proposed SimStock consistently outperforms
the baselines (Corr1, Corr2, Peer, and TS2VEC) in finding similar stocks within the same exchange,
across all four stock markets (US, SSE, SZSE, and TSE). For example, in the US to US scenario,
SimStock achieves a correlation of around 0.8 for the top similar stock (TOP@1), substantially
higher than the 0.6 correlation of the best performing TS2VEC.

Similarly, for the SSE to SSE and TSE to TSE scenarios, SimStock consistently shows superior
performance compared to the baselines, with correlations close to 0.8 for TOP@1, but SimStock

and TS2VEC gave equivalent results in SZSE to SZSE. Note that the performances of all the
baseline models were not much different. It is interesting that the peer stocks picked by investment
platforms (Peer) were not quite close to the query stocks in terms of DTW. The DTW results also
indicate that SimStock identifies more similar stocks, as evidenced by the lower DTW distances
compared to the baselines. These findings demonstrate that our SimStock effectively captures the
underlying patterns and dynamics of stock price movements, enabling it to find highly similar
stocks within the same exchange.

4.2.3. Quantitative evaluation: different exchanges scenario. The off-diagonal plots in
Figure 3 and Figure 4 represents the outcomes of identifying for similar stocks in exchanges different
from the exchange of the query stock. Note that Peer is not available for this scenario, because most
trading platforms do not provide information on similar stocks in other exchanges. The off-diagonal
plots demonstrate that SimStock outperforms the baselines in all different exchanges scenarios,
indicating its effectiveness in leveraging temporal domain generalization to identify similar stocks
across different markets. For instance, in the US to SSE, US to SZSE and US to TSE scenarios,
SimStock achieves correlations around 0.3 for TOP@1, surpassing the performance of Corr1, Corr2,
and TS2VEC. Similarly, for the SSE to US, SSE to SZSE and SSE to TSE scenarios, SimStock
exhibits higher correlations compared to the baselines, showcasing its ability to capture similarities
between stocks in these closely related exchanges.

However, it is important to note that the overall performance of all models in the different ex-
changes scenarios is lower compared to the same exchange scenario. This can be attributed to
the inherent differences in market dynamics, regulations, and economic factors across different ex-
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changes. Despite these challenges, SimStock consistently outperforms the baselines in all cases,
highlighting its robustness and adaptability in finding similar stocks across diverse market condi-
tions.

The DTW results in the off-diagonal plots further support the superiority of SimStock in iden-
tifying similar stocks across exchanges. The DTW approach is a more suitable alternative to the
correlation metric when considering different timestamps. SimStock consistently achieves lower
DTW distances compared to the baselines, indicating its ability to capture the overall patterns
and similarities in stock price movements, even when applied to different markets. These findings
underline the potential of SimStock in enabling investors and analysts to identify similar stocks
across different exchanges.
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Figure 3. Performance of models in same exchange (diagonal) and different exchanges (off-diagonal) scenarios for
finding similar stocks. The performance is evaluated using TOP@k Correlation metrics, where k = 9, 7, 5, 3, and 1.
Each data point represents the average correlation between the target stock and the top k similar stocks identified
by the respective model.
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Figure 4. Performance of models in same exchange (diagonal) and different exchanges (off-diagonal) scenarios for
finding similar stocks. The performance is evaluated using TOP@k DTW metrics, where k = 9, 7, 5, 3, and 1. Each
data point represents the average correlation between the target stock and the top k similar stocks identified by the
respective model.

14



May 30, 2024 Quantitative Finances output

4.2.4. Qualitative evaluation. The similarity between stocks should not be measured only
on time-series distances. Similar stocks may be in different industries, but they should have similar
fundamental information. Unfortunately, however, it is almost impossible to measure such similarity
in a quantitative way. Therefore, we provide qualitative analysis of the results.

To assess the effectiveness of SimStock in identifying fundamentally similar stocks, we conduct
a nuanced analysis by examining the actual stocks recommended by each method for a diverse set
of query stocks from various sectors (Table 2). We compare the top@3 similar stocks identified
by SimStock with those of the baseline methods, including TS2VEC, Corr1, Corr2, and Peer,
to evaluate whether SimStock captures relevant business characteristics, financial attributes, and
industry-specific similarities better than the baselines.

When we begin by examining the technology sector, SimStock identifies highly relevant similar
stocks for query stocks such as Apple (AAPL), Microsoft (MSFT), and Meta (META). For AAPL,
SimStock’s top@k similar stocks include Microsoft (MSFT), Tyler Technologies (TYL), and Intuit
(INTU), all well-established companies in the software and technology domain. In contrast, the
baseline methods identify a mix of technology and non-technology companies, such as Amazon
(AMZN) for TS2VEC and Corr2, and Thermo Fisher Scientific (TMO) for Corr1. Similarly, for
MSFT, SimStock identifies Cadence Design Systems (CDNS), Manhattan Associates (MANH), and
Tyler Technologies (TYL) as similar stocks, while the baselines include manufacturing companies
like Danaher (DHR) for Corr1.

Next, we analyze the healthcare sector, where SimStock identifies relevant similar stocks for
query stocks such as Pfizer (PFE) and Centene (CNC). For PFE, SimStock’s top similar stocks
include BioNTech (BNTX), Moderna (MRNA), and Johnson & Johnson (JNJ), all major players
in the pharmaceutical and biotechnology industries. The baseline methods, however, identify less
relevant stocks, such as NantKwest (NKNG) for TS2VEC and Metrocity Bankshares (MCBS) for
Corr1. For CNC, SimStock identifies other health insurance and financial services companies like
Bank of Montreal (BMO) and Morgan Stanley (MS), while the baselines include less related stocks,
such as Humana (HUM) for TS2VEC and Stericycle (SRCL) for Corr2.

In the energy sector, SimStock identifies industry-specific similar stocks for the query stock
Exxon-Mobil (XOM), such as Marathon Oil (MRO), Cenovus Energy (CVE), and Hess Corporation
(HES). The baseline methods also identify some relevant energy stocks, such as MRO for TS2VEC
and Murphy Oil Corporation (MUR) for Corr1 and Marathon Petroleum (MPC) for Corr2. That
is, all methods successfully identified stocks that are similar to XOM.

Finally, we examine the financial sector, where SimStock identifies relevant similar stocks for
query stocks such as Wells Fargo (WFC) and Visa (V). For WFC, SimStock’s top similar stocks
include Bank of America (BAC), Fifth Third Bancorp (FITB), and F.N.B. Corporation (FNB),
all well-known banking institutions. Similar, the baseline methods also identify relevant banking
stocks, such as BAC for Corr2, JPMorgan Chase (JPM) for TS2VEC and Berkshire Hills Bancorp
(BHLH) for Corr1. For V, SimStock identifies Mastercard (MA), Stifel Financial (SF), and Inter-
continental Hotels Group (IHG) as similar stocks, while the baselines include less related stocks,
such as Planet Fitness (PLNT) for Corr2.

4.3. Application to Pairs trading

In this section, we investigate the practical application of the similar stocks identified by SimStock

in the context of pairs trading. Pairs trading is a market-neutral trading strategy that exploits
the relative mispricing between two highly correlated securities (Gatev et al. 2006). The strategy
involves simultaneously buying the relatively underpriced security and selling the relatively over-
priced security, with the expectation that the prices will converge to their long-term equilibrium.
We assess the profitability of pairs trading using the top@k similar stocks identified by SimStock

and compare its performance with benchmark models, namely TS2VEC, Corr1, and Corr2. We
added Cointegration method (Coint)(Nelson and Plosser 1982, Enders 2004) to the benchmark
model, which selected 3 stocks from the US exchange that exhibited the strongest cointegration
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Query
Stock

Method
TOP@3 similar stocks Query

Stock
Method

TOP@3 similar stocks
First Second Third First Second Third

AAPL

SimStock MSFT TYL INTU

PFE

SimStock BNTX MRNA JNJ
TS2VEC AMZN WTM AMD TS2VEC NKNG DJCO ESGR
Corr1 TMO SNPS CNDS Corr1 ICL MCBS PTSI
Corr2 GLOB AMZN TYL Corr2 RMR NVS BUD
Peer MSFT NVDA ASML Peer LLY ABBV NVO

CMG

SimStock AMZN MANH MSFT

AMZN

SimStock CMG INTU MANH
TS2VEC NVR USLM NEU TS2VEC AAPL F PLPC
Corr1 DHR DSGX PCTY Corr1 ACMR ADBE FIVN
Corr2 PAYC PCTY MANH Corr2 TEAM LYV GENE
Peer HLT RACE AZO Peer TSLA BKNG SBUX

MSFT

SimStock CDNS MANH TYL

BA

SimStock IVZ SPR UAA
TS2VEC GOOG GOOGL MA TS2VEC LPL NNI FCX
Corr1 DHR TMO FAST Corr1 NCLH SPR SOHO
Corr2 GOOGL GOOGL DAVA Corr2 RVSB ENVA STT
Peer AAPL NVDA ASML Peer NOC CNI WM

WFC

SimStock BAC FITB FNB

META

SimStock SPOT PYPL FORM
TS2VEC JPM C MA TS2VEC UHAL MAR MSFT
Corr1 BHLH WNEB RVSB Corr1 CVNA GREE INDP
Corr2 BAC WBS CFG Corr2 SKYW JAGX CTHR
Peer CHTR NTES ATVI Peer MCD LOW TM

V

SimStock MA SF IHG

MA

SimStock V BKNG IHG
TS2VEC MA MSFT KO TS2VEC V KO NUE
Corr1 MA TDY ROP Corr1 V TDY FICO
Corr2 MA PLNT RELX Corr2 V GES RTO
Peer MA ADBE CSCO Peer JPM BAC V

XOM

SimStock MRO CVE HES

CVS

SimStock CNC BMO MS
TS2VEC MRO CVX NUE TS2VEC HUM VNR BKNG
Corr1 MUR MRO EOG Corr1 CCB CHRD RJF
Corr2 MPC HES ERF Corr2 SRCL MLM NMFC
Peer CVX SHEL TTE Peer ANTM MDT GSK

Table 2. Top@3 similar stocks identified by SimStock and baseline methods (TS2VEC, Corr1, Corr2, and Peer) for
a diverse set of query stocks from the technology, healthcare, energy, and financial sectors.

relationships, as determined by their p-values in descending order.

4.3.1. Pairs trading procedure. We employ the price ratio approach for pairs trading, which
involves constructing a spread between two securities by computing the ratio of their prices. The
spread is then normalized by its historical mean and standard deviation to obtain the Z-score,
which measures the deviation of the current spread from its historical average in terms of standard
deviations. The Z-score is calculated as follows:

PRt = Pq,t/Ps,t

Zt = (µPRt

1 − µPRt

2 )/σPRt

2

(12)

where Pq,t and Ps,t are the prices of the query stock and similar stock in the pair at time t,
and µ1, µ2, and σ2 are the rolling mean and standard deviation of the price ratio up to time t,
calculated using lookback periods of L1 and L2 trading days, respectively.

Trading signals are generated based on the Z-score, with the opening of a long-short position
when the Z-score exceeds a pre-specified threshold of ±1.25 SD, indicating a significant deviation
from the long-term equilibrium. Specifically, when Zt > 1.25 SD, we sell the overpriced security
and buy the underpriced security. Conversely, when Zt < −1.25 SD, we buy the overpriced security
and sell the underpriced security. The position is closed when the Z-score reverts back within the
range [−0.5 SD, 0.5 SD], suggesting price convergence. To limit potential losses, a stop-loss(Hwang
et al. 2023) mechanism is implemented, whereby positions are closed if the portfolio value drops
below a predetermined threshold Lstop of 500 USD.

To determine optimal values for the hyperparameters L1 and L2, we perform a grid search over
the training period from 2022-01-01 to 2022-12-31. Different L1 and L2 values are determined
for each query stock paired with each of its top 3 similar stocks identified by SimStock and the
benchmark models (TS2VEC, Corr1, Corr2), resulting in 3 pairs per query stock per model. Pairs
trading is applied independently to each pair, with overall performance for each query stock and
model calculated as the average wealth across the 3 pairs, starting with an initial trading capital
of 10,000 USD.

16



May 30, 2024 Quantitative Finances output

4.3.2. Evaluation of pairs trading performance. Table 3 presents the average terminal
wealth and maximum drawdown (MDD) achieved by applying pairs trading to the top@3 similar
stocks identified by SimStock and the benchmark models (TS2VEC, Corr1, Corr2, Coint) for each
query stock. The results of pair trading between query stock and TOP@1 stock can be found in
Appendix B.
SimStock achieves the highest average terminal wealth for 6 out of the 12 query stocks (AAP,

CMG, MSFT, WFC, BA and CVS). Coint performs best for 2 query stocks (XOM and PFE), while
Corr1, Corr2 and TS2VEC each perform best for 1 query stock (MA, AMZN and V respectively).
For the remaining query stocks, SimStock ranks second in terms of wealth for 4 cases (V, XOM,
META and MA).

Regarding maximum drawdown, SimStock exhibits the lowest MDD for 7 out of the 12 query
stocks (AAPL, CMG, MSFT, WFC, PFE, META and MA), indicating better risk management.
TS2VEC, Corr1, Corr2 and Coint achieve the lowest MDD for 1 query stock each (AMZN, V,
CVS and XOM respectively). For the remaining 5 query stocks (V, XOM, AMZN, BA and CVS),
SimStock has the second-lowest MDD. The ability to generate higher returns while maintaining
lower drawdowns suggests the robustness of the pairs identified by SimStock.

It is important to note that TS2VEC, Corr2, and Coint failed to generate buy/sell signals for
certain stocks. Specifically, TS2VEC and Coint were unable to generate signals for AAPL and
WFC, while Corr2 failed to do so for WFC. SimStock, on the other hand, generated a buy/sell
signal for one out of the three stocks, specifically META.

The results demonstrate the superior performance of SimStock in identifying profitable pairs
for trading compared to the benchmark models. SimStock’s ability to achieve the highest average
terminal wealth for the majority of query stocks while maintaining the lowest maximum drawdown
for most cases highlights its effectiveness in capturing meaningful similarities between stocks that
translate into successful pairs trading strategies.

Query
Stock

Wealth
SimStock TS2VEC Corr1 Corr2 Coint

AAPL 961.04 ±474.43 NaN∗∗ 234.69 ±1165.48 916.07 ±338.95 NaN∗∗

CMG 546.95 ±724.24 282.38 ±714.16 -1070.09 ±722.33 -1098.98 ±893.35 -857.35 ±2967.72

MSFT 754.12 ±69.73 498.11 ±785.76 474.85 ±1651.85 -306.61 ±2114.7 257.29 ±637.56

WFC 562.95 ±173.07 -780.57 ±1118.2 389.75 ±737.45 NaN∗∗ -478.31 ±2011.8

V 353.09 ±117.31 23.7 ±222.98 329.12 ±99.36 406.14 ±165.45 241.9 ±1070.96

XOM 389.74 ±266.41 356.79 ±252.04 -2.86 ±164.5 103.69 ±1097.92 2131.95 ±1424.47

PFE -411.46 ±677.54 114.38 ±2267.64 192.45 ±1656.14 -163.88 ±1545.7 419.19 ±211.39

AMZN 121.02 ±244.41 386.65 ±1305.54 -597.9 ±1003.48 2047.26 ±2090.29 -1184.76 ±3526.17

BA 572.82 ±2258.07 16.24 ±853.6 -1211.11 ±658.4 -653.36 ±1339.05 143.52 ±725.58

META 1344.86 ± NaN∗ -589.62 ±1253.38 1820.84 ±1903.45 -1695.45 ±3261.33 325.51 ±1269.18

MA 122.96 ±65.76 -99.61 ±266.94 246.72 ±69.7 -247.12 ±954.71 -577.71 ±893.93

CVS 1092.8 ±528.37 -634.47 ±774.1 989.94 ±761.13 795.5 ±367.36 -213.04 ±1318.44

Query
Stock

Maximum Drawdown (%)
SimStock TS2VEC Corr1 Corr2 Coint

AAPL -1.91 ±0.67 NaN∗∗ -6.06 ±3.47 -3.4 ±2.01 NaN∗∗

CMG -2.99 ±2.54 -6.38 ±2.22 -14.98 ±6.37 -15.55 ±10.38 -20.05 ±15.48

MSFT -2.82 ±1.88 -5.67 ±0.24 -7.16 ±4.7 -12.92 ±12.56 -13.57 ±2.58

WFC -2.2 ±3.78 -9.2 ±8.24 -5.76 ±4.54 NaN∗∗ -16.07 ±13.41

V -2.22 ±2.55 -2.39 ±2.78 -0.43 ±0.75 -3.17 ±4.48 -7.48 ±5.89

XOM -3.4 ±0.41 -3.03 ±2.97 -4.72 ±1.43 -6.55 ±6.9 -5.78 ±4.3

PFE -7.84 ±7.41 -10.03 ±13.5 -9.99 ±9.42 -10.45 ±5.08 -9.05 ±5.56

AMZN -5.06 ±4.99 -4.68 ±2.33 -15.14 ±9.38 -8.97 ±4.15 -31.92 ±13.14

BA -12.1 ±11.58 -5.86 ±2.15 -15.48 ±8.63 -12.87 ±3.26 -14.44 ±7.33

META -4.92 ±NaN∗ -8.77 ±8.96 -11.59 ±4.95 -34.15 ±26.03 -25.43 ±11.24

MA -2.18 ±2.51 -5.01 ±5.2 -2.58 ±2.72 -6.85 ±7.24 -11.51 ±4.68

CVS -3.02 ±1.88 -9.2 ±8.57 -4.57 ±4.6 -2.92 ±1.36 -19.87 ±17.05

Table 3. Average terminal wealth (first row) and maximum drawdown (MDD) (second row) achieved by applying
pairs trading to the top@3 similar stocks identified by SimStock, TS2VEC, Corr1, Corr2, coint for each query

stock. he best performing method is highlighted in bold, while the second best is in underline.

Note: NaN** values in both the terminal wealth and MDD indicate that the method failed to generate buy/sell signals for all three
stocks in the pair. NaN* values only in the standard deviation indicate that the method failed to generate buy/sell signals for two
out of the three stocks in the pair. For all other values, all method generated buy/sell signals for all three stocks in the pair.
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4.4. Application to index tracking of thematic ETFs

Thematic ETFs have gained popularity among retail investors who wish to invest in specific themes
or trends, such as innovative technologies. These ETFs are composed of assets that share a com-
mon theme, providing a contrast to traditional sector-based classifications, which can be slow and
ambiguous in reflecting technological advancements and innovations. As thematic ETFs aim to
identify innovative tech companies, many investors are interested in tracking these ETFs.

In this section, we compare the performance of SimStock and other baselines in identifying stocks
to track four popular thematic ETFs. Our goal is to find similar stocks from the US, SSE, SZSE,
and TSE exchanges that can effectively track the performance of these thematic ETFs. In other
words, we use the thematic ETFs as queries to find similar stocks in each model.

For this analysis, we selected the four popular thematic ETFs: ARK Innovation ETF (ARKK),
First Trust Cloud Computing ETF (SKYY), Global X Robotics & AI ETF (BOTZ), and Global
X Lithium & Battery Tech ETF (LIT). The in-sample and out-of-sample periods are the same as
those used in section 4.1.

4.4.1. Evaluation metrics. To evaluate the performance of SimStock and the baselines in
tracking thematic ETFs, we first find the top k similar stocks based on the thematic ETF queries.
We then create equal-weighted portfolios using these similar stocks to track the thematic ETFs.
We use two metrics to assess the tracking performance: Tracking Error (TE) and Tracking Error
Volatility (TEV) (Focardi and Fabozzi 2004).

The end-of-the-period tracking error (TE) is calculated as follows:

TE =

√√√√ 1

n

n∑
j=1

(RIj −RPj )2 (13)

where RIj and RPj are the cumulative returns of the query ETF and the tracking portfolio at
period j, respectively, and n is the number of periods.

Tracking Error Volatility (TEV) measures the volatility of the difference in returns between the
tracking portfolio and the target ETF. It is calculated as the standard deviation of the difference
in returns:

TEV =

√√√√ 1

n

n∑
j=1

(RIj −RPj − E[RI −RP ])2 (14)

where E[RI −RP ] is the mean difference in returns between the target ETF and the tracking
portfolio over the n periods. For each thematic ETF, we find the top@k similar stocks on each
exchange (US, SSE, SZSE, TSE) using SimStock and the baseline methods. We then create equal-
weighted portfolios using these similar stocks to track the performance of the thematic ETFs.

4.4.2. Quantitative evaluation. In this subsection, we quantitatively evaluate the perfor-
mance of SimStock and the baseline methods in tracking the four thematic ETFs. Tables 4 report
the tracking error (TE) for each ETF using the top@k similar stocks identified by each method
across the four exchanges. The best performing method for each k and exchange is highlighted
in bold, while the second best is in underline. The results of the evaluation with Tracking Error
Volatility (TEV) can be found in Appendix B.

A clear pattern emerges from the results: SimStock consistently achieves the bold (blue) or

18



May 30, 2024 Quantitative Finances output

second lowest (underline) tracking error for the majority of k values across three of the four ETFs
(ARKK, SKYY, and BOTZ) and exchanges. This strong performance demonstrates that the similar
stocks identified by SimStock are highly effective at tracking these thematic ETFs. In contrast to
SimStock, while the Corr1 and Corr2 baselines show reasonable performance in some cases, they
lack consistency across different scenarios. TS2VEC, on the other hand, generally exhibits higher
tracking errors, indicating that the stocks it identifies do not track the ETFs as closely.

Notably, SimStock’s performance on the US exchange is particularly impressive for ARKK,
SKYY, and BOTZ. It substantially outperforms the other methods, especially for lower values of
k (e.g., top 10-20 similar stocks), suggesting that SimStock excels at identifying a concentrated
set of the most relevant stocks for tracking these ETF themes. SimStock’s ability to identify
highly relevant stocks in this market, even with a smaller number of stocks (low top@k values), is a
testament to its effectiveness and precision in capturing the key components driving these thematic
ETFs. While the performance gap between SimStock and the other methods is less pronounced on
the other exchanges, SimStock still achieves the best or second-best performance in most cases for
ARKK, SKYY, and BOTZ. However, SimStock’s performance in tracking the Global X Lithium
& Battery Tech ETF (LIT) is relatively weaker compared to the other ETFs.

In addition to the quantitative evaluation using tracking error and tracking error volatility, we
can also visually assess the performance of SimStock and the baseline methods in tracking the
thematic ETFs by examining their cumulative return curves. Figure 5 showcases the cumulative
return curves for each thematic ETF (ARKK, SKYY, BOTZ, and LIT) and the corresponding
tracking portfolios created using the top@10 similar stocks identified by each method on the US
exchange.

The cumulative return curves provide a clear visual representation of how closely the tracking
portfolios match the performance of their respective thematic ETFs over time. For ARKK, SKYY,
and BOTZ, the SimStock portfolio (shown in blue) closely follows the trajectory of the thematic
ETF (shown in dotted black), indicating that the top 10 stocks identified by SimStock effectively
capture the performance of these ETFs. In contrast, the portfolios based on the other methods
(TS2VEC in purple, Corr1 in green, and Corr2 in red) exhibit larger deviations from the ETF
curves, suggesting that their selected stocks are less effective at tracking the ETFs.

The cumulative return curves represent SimStock’s ability to identify a concentrated set of
stocks that effectively track the performance of thematic ETFs, particularly for ARKK, SKYY,
and BOTZ, based on the top@10 similar stocks from the US exchange.
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ARK Innovation ETF (ARKK)
Exchange Methods

TOP@10 TOP@15 TOP@20 TOP@25 TOP@30 TOP@35
Corr1 0.2828 0.1363 0.0746 0.0822 0.0649 0.0592
Corr2 0.4264 0.2431 0.1132 0.1455 0.0963 0.1149

TS2VEC 0.4752 0.5772 0.5321 0.4887 0.3723 0.3046
US

SimStock 0.1934 0.0764 0.0975 0.1785 0.1822 0.2414
Corr1 0.4014 0.4244 0.4191 0.4250 0.4333 0.4365
Corr2 0.2753 0.2651 0.2739 0.2883 0.2681 0.2747

TS2VEC 0.3813 0.3815 0.3748 0.4037 0.4030 0.4142
SSE

SimStock 0.3064 0.3133 0.2778 0.2774 0.2754 0.3069
Corr1 0.3745 0.3843 0.3607 0.4006 0.3843 0.3923
Corr2 0.2302 0.2063 0.2138 0.2208 0.2380 0.2547

TS2VEC 0.2793 0.2843 0.3132 0.3074 0.2993 0.3010
SZSE

SimStock 0.1621 0.1643 0.1959 0.2252 0.2354 0.2272
Corr1 0.3965 0.3214 0.2694 0.2533 0.2591 0.2573
Corr2 0.1458 0.1707 0.1850 0.1846 0.1869 0.2002

TS2VEC 0.2712 0.2940 0.2574 0.2856 0.2841 0.2790
TSE

SimStock 0.1440 0.1322 0.1310 0.1328 0.1262 0.1321

First Trust Cloud Computing ETF (SKYY)
Exchange Methods

TOP@10 TOP@15 TOP@20 TOP@25 TOP@30 TOP@35
Corr1 0.1502 0.1968 0.2064 0.1937 0.1310 0.1235
Corr2 0.3643 0.2941 0.2130 0.2137 0.1673 0.1482

TS2VEC 0.2525 0.2370 0.2104 0.2377 0.2262 0.2263
US

SimStock 0.0939 0.0366 0.0645 0.0814 0.0603 0.0596
Corr1 0.2990 0.3471 0.3612 0.3715 0.3757 0.3872
Corr2 0.1865 0.1961 0.1941 0.1554 0.1647 0.1760

TS2VEC 0.2939 0.3475 0.3857 0.3616 0.3572 0.3240
SSE

SimStock 0.1607 0.1291 0.1688 0.1615 0.1748 0.1912
Corr1 0.4157 0.4014 0.3893 0.3915 0.3771 0.3603
Corr2 0.1329 0.1390 0.1532 0.1617 0.1679 0.1771

TS2VEC 0.2388 0.2789 0.2616 0.2598 0.2690 0.2499
SZSE

SimStock 0.1230 0.1543 0.1731 0.1651 0.1559 0.1455
Corr1 0.1363 0.1822 0.1756 0.2212 0.2206 0.2300
Corr2 0.1118 0.1489 0.1232 0.1389 0.1321 0.1261

TS2VEC 0.2220 0.2395 0.2384 0.2276 0.2290 0.2369
TSE

SimStock 0.0940 0.0733 0.0734 0.0660 0.0593 0.0691

Global X Robotics & AI ETF (BOTZ)
Exchange Methods

TOP@10 TOP@15 TOP@20 TOP@25 TOP@30 TOP@35
Corr1 0.2847 0.1581 0.0981 0.0881 0.0784 0.0897
Corr2 0.0946 0.1526 0.1249 0.1216 0.1448 0.1373

TS2VEC 0.1890 0.3221 0.3368 0.2763 0.2833 0.3247
US

SimStock 0.0364 0.0647 0.0946 0.0910 0.0890 0.0818
Corr1 0.2912 0.2870 0.2831 0.2738 0.2745 0.2815
Corr2 0.0863 0.1205 0.1198 0.1179 0.1220 0.1382

TS2VEC 0.2512 0.2535 0.2638 0.2955 0.2646 0.2696
SSE

SimStock 0.1471 0.1520 0.1514 0.1573 0.1509 0.1283
Corr1 0.2259 0.2063 0.2329 0.2466 0.2645 0.2763
Corr2 0.1016 0.1142 0.1143 0.1144 0.1242 0.1169

TS2VEC 0.1842 0.1516 0.1527 0.1387 0.1376 0.1694
SZSE

SimStock 0.0812 0.1289 0.1171 0.1246 0.1331 0.1366
Corr1 0.1646 0.1420 0.1457 0.1454 0.1411 0.1236
Corr2 0.0951 0.0916 0.0863 0.0844 0.0910 0.0895

TS2VEC 0.2155 0.2343 0.1943 0.1952 0.1959 0.1843
TSE

SimStock 0.0639 0.0730 0.0712 0.0797 0.0802 0.0764

Global X Lithium & Battery Tech ETF (LIT)
Exchange Methods

TOP@10 TOP@15 TOP@20 TOP@25 TOP@30 TOP@35
Corr1 0.2167 0.2819 0.2512 0.2638 0.2732 0.2465
Corr2 0.1424 0.2337 0.2234 0.2195 0.2512 0.1669

TS2VEC 0.0838 0.1094 0.0859 0.0924 0.1080 0.1070
US

SimStock 0.0446 0.0557 0.0647 0.0666 0.0694 0.0703
Corr1 0.1756 0.1671 0.1485 0.1431 0.1354 0.1294
Corr2 0.1159 0.1061 0.0983 0.0923 0.0899 0.0905

TS2VEC 0.0715 0.0798 0.0772 0.0790 0.0817 0.0803
SSE

SimStock 0.1003 0.1355 0.1084 0.1009 0.1161 0.1211
Corr1 0.1562 0.1431 0.1676 0.1676 0.1700 0.1730
Corr2 0.2638 0.2566 0.2073 0.1906 0.1838 0.1690

TS2VEC 0.1504 0.1236 0.1138 0.1090 0.0997 0.0962
SZSE

SimStock 0.2861 0.3187 0.2833 0.2892 0.2734 0.2412
Corr1 0.1839 0.2430 0.2477 0.2769 0.2600 0.2242
Corr2 0.3249 0.3030 0.2580 0.2457 0.2826 0.2662

TS2VEC 0.1563 0.1537 0.1642 0.1727 0.1502 0.1768
TSE

SimStock 0.2557 0.2794 0.2763 0.2866 0.2861 0.2735

Table 4. Tracking errors (TE) of SimStock and baseline methods for tracking the performance of four thematic
ETFs (ARKK, SKYY, BOTZ, and LIT) using top k similar stocks from the US, SSE, SZSE, and TSE exchanges.
The best performing method for each k and exchange is highlighted in bold, while the second best is in underline.
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Figure 5. Cumulative return curves of the four thematic ETFs (ARKK, SKYY, BOTZ, and LIT) and their cor-
responding tracking portfolios constructed using the top 10 similar stocks identified by SimStock and the baseline
methods (TS2VEC, Corr1, and Corr2) from the US exchange. The closer a portfolio’s curve follows the respective
ETF curve (dotted black line), the better the tracking performance.

4.4.3. Qualitative evaluation. For the ARK Innovation ETF (ARKK), which focuses on
disruptive innovation, SimStock identifies stocks of companies involved in cutting-edge technolo-
gies such as 3D computing(MLTS, DDD), fintech company(SQ), and artificial intelligence(SHOP).
Similarly, for the First Trust Cloud Computing ETF (SKYY), SimStock finds stocks of leading
cloud computing(NET, DBX, TYL, GWRE and GLOB) and software-as-a-service providers(INTU,
ESTC and PAYC). The qualitative assessment of SimStock’s similar stock selections for all the-
matic ETFs can be found in Appendix B.

4.5. Application to Portfolio optimization

In this section, we investigate whether SimStock embeddings can enhance portfolio optimization.
Specifically, we construct the correlation matrix using the SimStock embedding as a similarity
measure, and use it as an input for portfolio optimization. We compare the portfolio performance
using the SimStock embedding with other covariance estimators. Notice that SimStock is designed
to identify stocks with similar behavior, but it does not actively search for stocks that exhibit
completely different dynamics compared to a given stock. This may limit its ability to ensure
optimal portfolio diversification.

4.5.1. Optimization formulation. We consider the Mean-Variance Optimization (MVO)
framework (Markowits 1952) for portfolio optimization. The MVO approach determines the optimal
asset weights (ωi) in a portfolio, subject to constraints on risk and return, assuming the expected
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return (µi), variance (σ2
ii), and covariance (σij) of each asset are known. This study adopts the

experimental design and methodology established by (Gerber et al. 2021) We randomly sampled
the asset classes 100 times with 10, 30 and 50 stocks each from the S&P500 and JPX Prime 150.

The long-only MVO problem, accounting for transaction costs, is formulated as:

Maximize: wTµ− ψ1T |w − w0|

Subject to: wTΣw ≤ σ2
target, wT 1 = 0, 0 ≤ wk ≤ 1, ∀k = 1, 2, · · · , N.

(15)

The objective function seeks to maximize the portfolio’s expected return (ωTµ) while minimiz-
ing transaction costs, represented by the term ψ1T |ω−ω0|. Here, ψ denotes the fixed proportional
transaction cost, set to 10 basis points (0.1%) in this study, and ω0 represents the previous port-
folio weights. By including this term, we penalize deviations from the previous weights, effectively
controlling portfolio turnover and reducing trading costs.

The optimization is subject to three constraints: (1) the portfolio variance must not exceed a
predetermined risk target (σ2

target), (2) the sum of portfolio weights must equal unity, and (3)
individual asset weights must be non-negative and not exceed one, prohibiting short selling. By
solving this constrained optimization problem, we obtain the optimal portfolio weights ω∗ for a
given risk target σtarget and transaction cost ψ. The set of optimal portfolios across various risk
levels constitutes the efficient frontier, with each point representing the highest achievable return
for a specific level of risk.

We estimate the expected return µti for asset i at time t using the sample mean of its historical
returns over a T -month lookback window. For the covariance matrix Σ, we compare the performance
of historical covariance (HC), shrinkage method (SM) (Ledoit and Wolf 2004a), Gerber statistic
(GS) (Gerber et al. 2021), TS(TS2VEC) (Yue et al. 2022) embedding and SimStock embedding
(SS).

4.5.2. Portfolio backtesting procedure. To evaluate the performance of the different co-
variance estimators in the context of portfolio optimization, we employ the following backtesting
procedure. Starting from Jan 2021, at the beginning of each month, we use the monthly returns of
the current asset universe over the previous T = 12 months to estimate the expected return vector
µ and the covariance matrix Σ.

We then apply a quadratic optimizer to solve for the optimal portfolio weights ω∗ given a specific
risk target σtarget for MVO and the optimal portfolio weights w∗ that minimize the portfolio
variance for MVP. The previous portfolio is rebalanced according to the new optimal weights, and
this optimized portfolio is held for one month. At the end of the month, the realized portfolio
return is calculated as w∗T r̃, where r̃ represents the vector of realized asset returns for that month.

This process is repeated by rolling the in-sample period forward by one month and computing the
updated efficient portfolio for the next month. The rolling-window approach allows the portfolios
to adapt to structural changes in the market and mitigates data mining bias. As the initialization
of the first portfolio requires two years of monthly returns, our performance evaluation covers the
period from Jan 2022 to Feb 2024.

4.5.3. Evaluation for portfolio optimization. In this subsection, to evaluate the perfor-
mance of portfolios optimized using the SimStock embedding covariance matrix (ΣSS), we compare
their ex-post efficient frontiers with those of portfolios constructed using traditional covariance es-
timators, namely the historical covariance (HC), shrinkage method (SM), Gerber statistic (GS) and
TS2VEC (TS), denoted as ΣHC, ΣSM, ΣGS and ΣTS, respectively. To obtain the covariance matrix
ΣSS using the TS2VEC and SimStock embedding, we first compute the pairwise L2 distances be-
tween the embeddings of each stock pair. These distances are then scaled to the range [-1, 1] using
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Figure 6. Ex-post efficient frontiers displaying annualized return and volatility of portfolios optimized for different
risk targets. The black vertical dotted lines represent the average volatility of the S&P500 and JPX Prime 150,
respectively.

max-min normalization, which brings the stocks closer to 1 in the correlation matrix for smaller
L2 distances, indicating greater similarity between stocks. The resulting normalized distances are
used to populate the correlation matrix, represents the correlation coefficient between stocks i and
j as estimated by embeddings. We then compute the covariance matrix ΣTS and ΣSS. The analysis
is conducted on portfolios of varying sizes (10, 30, and 50 stocks) from both the S&P500 and JPX
Prime 150 universes, across different risk targets.

As shown in Figure 6, the SimStock embedding approach slightly outperforms the other covari-
ance estimators across all portfolio sizes and risk levels in both the S&P500 and JPX Prime 150
universes. The portfolios constructed using ΣSS achieve higher annualized returns for a given level of
annualized volatility compared to those based on ΣHC, ΣSM, ΣGS and ΣTS. This outperformance is
slightly more evident for smaller portfolio sizes (10 and 30 stocks), where the SimStock embedding
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method demonstrates an advantage in capturing meaningful relationships between assets, leading
to superior risk-adjusted performance. While our approach did not aim to take into account the
correlation coefficients between all stocks, these results suggest that SimStock has the potential to
slightly improve portfolio optimization results in portfolio construction settings.

The underperformance of TS2VEC is particularly noticeable when compared to the SimStock

(SS) embedding approach, which consistently outperforms all other methods. The gap between the
TS and SS curves is most evident for the smaller portfolio sizes (10 and 30 stocks), suggesting
that the TS2VEC embeddings may struggle to capture the nuanced relationships between assets
in these more concentrated portfolios.

4.5.4. Performance metrics for portfolio optimization. This section compares the perfor-
mance of five portfolio construction methods (Simstock embedding, Historical Covariance, Shrink-
age Method, Gerber Statistic, and TS2VEC embedding) for MVO, using 30-stock portfolios from
the S&P 500 and JPX Prime 150 universes. See Appendix C for results for 10 and 50 stocks.

Tables 5 and 6 present the performance metrics for the target risk optimizations in the S&P500
and JPX Prime 150 universes, respectively, at four different risk target levels (24%, 27%, 30%, and
33%). See Appendix C for results for 10 and 50 stocks.

In the S&P500 universe (Table 5), the Simstock embedding (SS) method produced the highest
returns at all risk target levels while maintaining risk measures comparable to the other methods.
Returns and risk measures increased for all methods as the risk target rose. The Historical Covari-
ance (HC), Shrinkage Method (SM), and Gerber Statistic (GS) methods performed similarly to
each other, but slightly worse than SS, particularly at higher risk levels. For example, at the 24%
risk target, SS achieved an 11.31% arithmetic return compared to 10.04%, 9.61%, and 10.14% for
HC, SM, and GS respectively. At the 33% risk target, SS’s return increased to 13.33%, while HC,
SM and GS saw returns of 12.50%, 12.85% and 12.69%. The TS2VEC embedding (TS) method
consistently underperformed the others, with a 9.40% return at the 24% risk level and 11.49% at
the 33% level, below all other methods.

The JPX Prime 150 universe (Table 6) showed similar patterns, with SS producing the best
returns, followed by HC, GS, SM and TS in that order across risk levels. SS achieved a 20.12%
return at the 24% risk target and 22.47% at the 33% target. In contrast, TS had the lowest returns
at 14.60% and 18.45% for those risk levels. The HC, GS, and SM methods produced returns that
were higher than TS but lower than SS at each corresponding risk level.

Despite potentially higher volatility which is evident in the ex-post efficient frontiers in Figure
6, the performance of the SS method highlights its potential as a meaningful and effective stock
embedding technique for portfolio optimization.
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4.5.5. Characteristics of SimStock similarity matrix. To investigate what distinguishes
the SimStock embedding method from other portfolio optimization methods, we can compare the
correlation matrices generated by different methodologies. Specifically, we propose the following
mapping:

∥∥ MD− RCfuture
∥∥

F∥∥ MD− RCpast
∥∥

F

≤ 1 (16)

Here, MD refers to the correlation matrix obtained using a specific methodology (e.g., SS, SM,
GS or TS), while RCfuture and RCpast represent the realized correlation matrices for the future and
past periods, respectively.

If the value of this mapping is less than or equal to 1, it implies that
∥∥ MD− RCfuture

∥∥
F
≤∥∥ MD− RCpast

∥∥
F
. This means that the current methodology is tracking the future correlation

matrix well, as the Frobenius distance between the method’s correlation matrix and the future
realized correlation matrix is smaller than the distance between the method’s correlation matrix
and the past correlation matrix.
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Figure 7. Comparison of Frobenius distances between correlation matrices generated by different methodologies (SS:
SimStock embedding, SM: shrinkage method, GS: Gerber statistic) and realized correlation matrices for consecutive
years in the S&P500 and JPX Prime 150 universes. Lower values indicate better tracking of the future correlation
matrix. The SS method consistently exhibits lower Frobenius distances compared to the SM , GS and TS methods
across most month pairs in both universes, suggesting its superior ability to capture future asset correlations.

Figure 7 illustrates the Frobenius distances for different methodologies in the S&P500 and JPX
Prime 150 universes. The figure compares the correlation matrices between the same months in
consecutive years (e.g., Feb-2021 vs Feb-2022, Mar-2021 vs Mar-2022, etc.). For example, ”Feb-
2021 vs Feb-2022” means that the correlation series for the period from February 2021 to January
2022 is compared to the correlation series for the period from February 2022 to January 2023,
representing the current year and the future year, respectively.

For the S&P500, the Frobenius distances for the SimStock embedding method (SS) are con-
sistently lower than those of the shrinkage method (SM), Gerber statistic (GS) and TS2VEC
embedding (TS) across all month pairs. This suggests that the SS method is better at tracking the
future correlation matrix compared to the SM and GS methods.

Similarly, in the JPX Prime 150 universe, the SS method generally exhibits lower Frobenius
distances than the SM, GS and TS methods for most month pairs. This indicates that the SS
method is more effective at capturing the future correlation structure of the assets compared to
the other methodologies.
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The ability of the SimStock embedding method to better track the future correlation matrix
can be attributed to its unique approach, temporal representation learning, in capturing the latent
relationships between assets. This improved understanding of the underlying asset dynamics could
enable the SS method to generate correlation matrices that more closely resemble the future realized
correlations, thereby providing an advantage edge in portfolio optimization.

5. Conclusion

In this paper, we propose SimStock, a novel temporal self-supervised learning framework that aims
to learn robust and informative representations of financial time series data. By incorporating tech-
niques from SSL and temporal domain generalization, SimStock captures the complex relationships
between different financial assets while accounting for temporal shifts in the data distribution. The
proposed dimension corruption method integrates temporal patterns into the corruption process,
enabling SimStock to learn representations that are robust to noise and non-stationarity in the
data.

We conduct extensive experiments on four real-world benchmarks with thousands of stocks to
demonstrate the effectiveness of SimStock in finding similar stocks. Our results show that SimStock
consistently outperforms existing methods in both one-to-one and one-to-many scenarios, achieving
state-of-the-art performance in terms of accuracy and robustness. The qualitative analysis further
highlights the ability of SimStock to identify stocks with similar fundamental characteristics and
industry-specific similarities, simplifying the process of screening potential investment opportuni-
ties.

The practical utility of SimStock is demonstrated through various financial applications, includ-
ing pairs trading, index tracking, and portfolio optimization. In the pairs trading experiment, using
the similar stocks identified by SimStock leads to superior profitability compared to traditional
methods. For index tracking, SimStock exhibits lower tracking errors and better alignment with the
underlying themes of thematic ETFs, particularly for ARKK, SKYY, and BOTZ. Finally, in port-
folio optimization, the SimStock embedding approach slightly outperforms traditional covariance
estimators, achieving higher risk-adjusted returns across different portfolio sizes and risk levels.

The success of SimStock can be attributed to its unique approach of temporal representation
learning, which captures the latent relationships between assets and better tracks future correlation
matrices compared to other methodologies. This improved understanding of the underlying asset
dynamics provides an edge in various financial applications.
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Appendix

Appendix A: Pairs trading results for query stock and TOP@1 similar Stock

In this section, we present the pairs trading results obtained by applying the trading strategy to
the query stock and its top@1 similar stock identified by SimStock and the benchmark models
(TS2VEC, Corr1, Corr2, and Coint).

Table A.1 shows the terminal wealth and maximum drawdown (MDD) achieved for each query
stock and its top@1 similar stock. The best-performing model for each query stock is highlighted
in bold, while the second-best model is underlined.

SimStock achieves the highest terminal wealth for 3 out of the 12 query stocks (AAPL, CMG,
and BA). Coint outperforms for 4 query stocks (V, XOM, AMZN, and MA), while Corr1 and
Corr2 each outperform for 2 query stocks (MSFT and CVS for Corr1; PFE and MSFT for Corr2).
TS2VEC achieves the highest wealth for AMZN. For the query stocks V and MA, SimStock,
TS2VEC, Corr1, and Corr2 yield the same results.

In terms of maximum drawdown, SimStock achieves the lowest MDD for 4 out of the 12 query
stocks (CMG, WFC, BA, and MSFT). TS2VEC exhibits the lowest MDD for 3 query stocks
(AAPL, AMZN, and MA), while Corr1 outperforms for 2 query stocks (PFE and CVS). Corr2
achieves the lowest MDD for V and MA, and Coint outperforms for XOM.

TS2VEC fails to generate buy/sell signals for the query stock PFE and WFC, resulting in NaN
values for wealth and MDD. Similarly, Corr1 fails to generate signals for one of the occurrences
of the MSFT query stock. These instances show limitations in the consistency of the benchmark
models in identifying tradable opportunities.

SimStock achieves competitive performance in terms of terminal wealth and MDD for a signifi-
cant number of query stocks, indicating its effectiveness in capturing meaningful similarities that
translate into profitable trading strategies.

Query
Stock

Wealth Maximum Drawdown (%)
SimStock TS2VEC Corr1 Corr2 Coint SimStock TS2VEC Corr1 Corr2 Coint

AAPL 1508.74 1303.97 -798.23 767.28 NaN -2.25 -0.46 -3.16 -11.6 NaN
CMG 373.21 -542.15 -1203.44 -1505.86 -59.09 -5.68 -4.92 -7.5 -24.78 -8.65
MSFT 804.26 1277.58 836.2 510.55 622.76 -3.82 -5.42 -5.55 -5.92 -11.76
WFC 756.55 NaN 1236.23 756.55 -2724.44 -0.05 -5.74 -6.82 -0.05 -31.55
V 239.17 239.17 239.17 239.17 701.17 0.00 0.00 0.00 0.00 -2.78

XOM 104.92 104.92 -192.2 -1120.8 1099.85 -11.41 -11.41 -6.64 -14.22 -1.40
PFE -310.09 NaN 293.87 1501.43 440.50 -5.69 NaN -1.88 -8.07 -7.04

AMZN 373.21 1225.26 -1743.54 661.29 2624.92 -5.68 -0.01 -22.64 -10.88 -27.18
BA 1321.94 117.8 -921.89 892.8 93.55 -3.66 -6.71 -11.96 -15.8 -22.80

MSFT 532.16 -2012.47 1619.35 1046.26 1789.72 -1.00 -27.68 NaN -6.48 -26.11
MA 196.77 196.77 196.77 196.77 404.83 0.00 0.00 0.00 0.00 -6.12
CVS 726.03 -1464.39 1494.54 439.9 -1647.26 -2.58 -9.36 -10.24 -9.96 -39.55

Table A.1. Pairs trading results for the query stock and its top@1 similar stock identified by SimStock, TS2VEC,
Corr1, Corr2 and Coint. The table presents the terminal wealth and maximum drawdown (MDD) achieved for each

query stock and method combination. The best-performing method for each query stock is highlighted in bold,
while the second-best method is underlined. NaN values indicate instances where the method failed to generate

buy/sell signals.
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Appendix B: Application to index tracking of thematic ETFs

Qualitative evaluation

In this subsection, to provide a comprehensive qualitative evaluation, we examine the overlapping
and non-overlapping tickers for each model and ETF combination, along with their respective
industries, as illustrated in Figure B.1. This analysis enables us to assess the extent to which the
models capture the underlying themes of the ETFs. The experimental setup involves selecting 10
stocks to track each ETF on the US exchange, as shown in Figure 5.

For the ARKK ETF, which focuses on disruptive innovation, SimStock identifies several relevant
stocks across various sectors. The overlapping tickers include ROKU (Roku Inc., a company that
provides streaming media devices and services), SHOP (Shopify Inc., an e-commerce platform
provider), and SQ (Square Inc., a financial technology company). The non-overlapping tickers
selected by SimStock also align with the disruptive innovation theme, including companies from 3D
printing (MTLS: Materialise NV; DDD: 3D Systems Corp.), biotechnology (EDIT: Editas Medicine
Inc.), and e-commerce (MELI: MercadoLibre Inc.). In contrast, the baseline models (TS2VEC, and
Corr1) either have no overlapping tickers or include stocks from less relevant industries, such as
insurance (WTM: White Mountains Insurance Group Ltd.), sports (MANU: Manchester United
plc), and real estate (FLJ: FLJ Group Ltd.).

For the SKYY ETF, which tracks the cloud computing industry, SimStock identifies NET (Cloud-
flare Inc., a content delivery network and DDoS mitigation company), cloud storage (DBX: Dropbox
Inc.), financial software (INTU: Intuit Inc.), Elasticsearch (ESTC: Elastic N.V.) and PAYC (Pay-
com Software Inc., a provider of human capital management software) as overlapping tickers. The
non-overlapping stocks selected by SimStock also show a strong connection to the cloud computing
theme such as software compnay (TYL: Tyler Technologies Inc.; GWRE: Guidewire Software, Inc.;
GLOB: Globant S.A.). The baseline models, however, include stocks from a wider range of indus-
tries that are less directly related to cloud computing, such as automotive (F: Ford Motor Co.),
retail (W: Wayfair Inc.), and real estate (LAMR: Lamar Advertising Co.), biotechnology (LIFE:
aTyr Pharma Inc.; VBIV: VBI Vaccines Inc.), and agriculture (VFF: Village Farms International
Inc.).

For the BOTZ ETF, which focuses on robotics and artificial intelligence, SimStock identifies
NVDA (NVIDIA Corp.) as an overlapping ticker. While the non-overlapping stocks selected by
SimStock include some companies from other sectors, such as asset management (AMG: Affiliated
Managers Group Inc.; GAM: General American Investors Co. Inc.) and building materials (MLM:
Martin Marietta Materials Inc.), the model also identifies several companies from the semiconductor
industry (QRVO: Qorvo Inc.; ASML: ASML Holding N.V.; LSCC: Lattice Semiconductor Corp.),
which is a key enabler of robotics and AI. The baseline models, TS2VEC and Corr1, include stocks
from a diverse range of industries that are less directly related to the robotics and AI theme, such as
animal healthcare (IDXX: IDEXX Laboratories Inc.), insurance (AEG: Aegon N.V.), and electric
vehicles (HYLN: Hyliion Holdings Corp.).

For the LIT ETF, which tracks the lithium and battery tech industry, SimStock identifies three
overlapping tickers: ALB (Albemarle Corp.), ALTM (Altus Midstream Co.) and LAAC (Lithium
Americas (Argentina) Corp), both of which are involved in lithium mining. However, the non-
overlapping stocks selected by SimStock come from various other industries, such as asset man-
agement (AB: AllianceBernstein Holding L.P.; APAM: Artisan Partners Asset Management Inc.;
BLK: BlackRock Inc.; KKR: KKR & Co. Inc.) and software (BB: BlackBerry Ltd.), which are
less directly related to the lithium and battery tech theme. The baseline models also struggle to
identify relevant stocks for this ETF, with no overlapping tickers and selections from industries
such as insurance (WTM: White Mountains Insurance Group Ltd.; ERIE: Erie Indemnity Co.;
ASR: Grupo Aeroportuario del Sureste, S. A. B. de C. V.), automotive (F: Ford Motor Co.; SUZ:
Suzuki Motor Corp.), and engineering & construction (MYRG: MYR Group Inc.; FRHC: Freedom
Holding Corp.).
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This qualitative analysis represent that SimStock’s top@10 stocks for each ETF generally align
better with the respective themes compared to the baseline models, particularly for the ARKK,
SKYY, and BOTZ ETFs. Howevere, the baseline models, TS2VEC and Corr1, include stocks from
a diverse range of industries that are less directly related to the specific themes of the ETFs. Corr2
shows some improvement over the other baselines, with a few overlapping tickers for ARKK and
BOTZ, but it still lags behind SimStock in terms of capturing the underlying themes of the ETFs.
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Figure B.1. Top@10 stocks selected by each model to track the four thematic ETFs (ARKK, SKYY, BOTZ, and
LIT) on the US exchange. The overlapping tickers between the model selections and the actual ETF holdings are
shown in red, while the non-overlapping tickers are shown in white. SimStock demonstrates a higher number of
overlapping tickers with the ETF holdings compared to the baseline models, particularly for ARKK, SKYY, and
BOTZ, indicating its ability to identify stocks that align with the underlying themes of these ETFs.
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Appendix C: Tracking Error Volatility (TEV) Results

In this section, we present the Tracking Error Volatility (TEV) results to complement the Tracking
Error (TE) analysis discussed in the main text. TEV measures the volatility of the difference in
returns between the tracking portfolio and the target ETF, providing information into the stability
and consistency of the tracking performance.

We computed the TEV for each combination of the four thematic ETFs (ARK Innovation ETF
(ARKK), First Trust Cloud Computing ETF (SKYY), Global X Robotics & AI ETF (BOTZ),
and Global X Lithium & Battery Tech ETF (LIT)) and the four exchanges (US, SSE, SZSE, and
TSE). The TEV values were calculated for the top k similar stocks (k = 10, 15, 20, 25, 30, 35)
identified by SimStock and the baseline methods (Corr1, Corr2, TS2VEC).

Tables C.1 present the TEV results for ARKK, SKYY, BOTZ, and LIT, respectively. In each
table, the best performing method for each k and exchange is highlighted in bold, while the second
best is in underline. The TEV results are consistent with the findings from the TE analysis in the
main text. SimStock achieves the lowest (bold) or second lowest (underline) TEV values for the
majority of k values and exchanges, particularly for ARKK, SKYY, and BOTZ. This indicates that
the similar stocks identified by SimStock not only closely track the performance of these ETFs but
also exhibit lower volatility in the tracking error, resulting in more stable tracking portfolios.

The performance of SimStock in terms of both TE and TEV demonstrates its effectiveness in
identifying stocks that can accurately and consistently track the performance of thematic ETFs,
especially for ARKK, SKYY, and BOTZ. The lower TEV values achieved by SimStock suggest
that its tracking portfolios are less prone to large deviations from the target ETF returns, providing
investors with more reliable and stable tracking options.
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ARK Innovation ETF (ARKK)
Exchange Methods

TOP@10 TOP@15 TOP@20 TOP@25 TOP@30 TOP@35
Corr1 0.1524 0.0893 0.0720 0.0630 0.0540 0.0474
Corr2 0.1669 0.1141 0.1018 0.1061 0.0894 0.1042

TS2VEC 0.1884 0.2225 0.1852 0.1701 0.1460 0.1292
US

SimStock 0.1934 0.0764 0.0975 0.1785 0.1822 0.2414
Corr1 0.1747 0.1864 0.1820 0.1824 0.1833 0.1839
Corr2 0.1513 0.1414 0.1417 0.1435 0.1394 0.1406

TS2VEC 0.1633 0.1618 0.1527 0.1629 0.1637 0.1655
SSE

SimStock 0.1414 0.1419 0.1352 0.1366 0.1358 0.1429
Corr1 0.1747 0.1824 0.1709 0.1845 0.1800 0.1815
Corr2 0.1399 0.1376 0.1355 0.1382 0.1394 0.1394

TS2VEC 0.1495 0.1456 0.1489 0.1463 0.1410 0.1415
SZSE

SimStock 0.1436 0.1411 0.1410 0.1449 0.1397 0.1350
Corr1 0.1969 0.1759 0.1430 0.1388 0.1387 0.1358
Corr2 0.1165 0.1129 0.1213 0.1172 0.1149 0.1141

TS2VEC 0.1309 0.1335 0.1262 0.1279 0.1312 0.1251
TSE

SimStock 0.1117 0.1116 0.1118 0.1125 0.1076 0.1074

First Trust Cloud Computing ETF (SKYY)
Exchange Methods

TOP@10 TOP@15 TOP@20 TOP@25 TOP@30 TOP@35
Corr1 0.1150 0.1406 0.1379 0.1245 0.1058 0.0993
Corr2 0.2410 0.2298 0.2011 0.1916 0.1586 0.1455

TS2VEC 0.1849 0.1655 0.1407 0.1397 0.1387 0.1330
US

SimStock 0.0616 0.0364 0.0561 0.0653 0.0541 0.0521
Corr1 0.1699 0.1929 0.1993 0.2014 0.2035 0.2134
Corr2 0.1490 0.1386 0.1303 0.1118 0.1133 0.1188

TS2VEC 0.1897 0.1975 0.2151 0.2074 0.2013 0.1871
SSE

SimStock 0.1106 0.0921 0.1128 0.1072 0.1074 0.1167
Corr1 0.2248 0.2183 0.2123 0.2156 0.2106 0.2042
Corr2 0.1103 0.1143 0.1164 0.1122 0.1212 0.1239

TS2VEC 0.1642 0.1796 0.1684 0.1689 0.1702 0.1594
SZSE

SimStock 0.1103 0.1130 0.1157 0.1105 0.1047 0.1020
Corr1 0.1308 0.1363 0.1239 0.1429 0.1450 0.1472
Corr2 0.0723 0.0846 0.0762 0.0871 0.0818 0.0810

TS2VEC 0.1066 0.1142 0.1153 0.1136 0.1108 0.1215
TSE

SimStock 0.0842 0.0703 0.0704 0.0640 0.0570 0.0625

Global X Robotics & AI ETF (BOTZ)
Exchange Methods

TOP@10 TOP@15 TOP@20 TOP@25 TOP@30 TOP@35
Corr1 0.1599 0.1030 0.0744 0.0758 0.0729 0.0774
Corr2 0.0807 0.0971 0.0872 0.0892 0.0951 0.0865

TS2VEC 0.1023 0.1464 0.1458 0.1218 0.1221 0.1338
US

SimStock 0.0359 0.0360 0.0465 0.0535 0.0551 0.0548
Corr1 0.1326 0.1354 0.1379 0.1337 0.1315 0.1348
Corr2 0.0810 0.0846 0.0814 0.0819 0.0846 0.0887

TS2VEC 0.1274 0.1204 0.1196 0.1315 0.1251 0.1225
SSE

SimStock 0.0664 0.0745 0.0760 0.0828 0.0782 0.0755
Corr1 0.1236 0.1143 0.1193 0.1250 0.1333 0.1369
Corr2 0.0910 0.0884 0.0868 0.0836 0.0837 0.0808

TS2VEC 0.0914 0.0812 0.0855 0.0815 0.0804 0.0890
SZSE

SimStock 0.0808 0.0875 0.1083 0.1030 0.1044 0.0991
Corr1 0.0688 0.0680 0.0729 0.0757 0.0724 0.0643
Corr2 0.0773 0.0890 0.0837 0.0830 0.0864 0.0818

TS2VEC 0.0970 0.0926 0.0834 0.0861 0.0804 0.0814
TSE

SimStock 0.0604 0.0730 0.0711 0.0792 0.0794 0.0764

Global X Lithium & Battery Tech ETF (LIT)
Exchange Methods

TOP@10 TOP@15 TOP@20 TOP@25 TOP@30 TOP@35
Corr1 0.1548 0.1744 0.1605 0.1708 0.1805 0.1706
Corr2 0.0935 0.1440 0.1450 0.1433 0.1677 0.1246

TS2VEC 0.0819 0.1091 0.0858 0.0869 0.1051 0.0996
US

SimStock 0.0389 0.0513 0.0501 0.0492 0.0560 0.0536
Corr1 0.0840 0.0752 0.0729 0.0701 0.0724 0.0714
Corr2 0.0843 0.0837 0.0804 0.0843 0.0883 0.0901

TS2VEC 0.0702 0.0781 0.0764 0.0788 0.0817 0.0803
SSE

SimStock 0.0945 0.1193 0.1031 0.0942 0.1060 0.1114
Corr1 0.0565 0.0567 0.0617 0.0609 0.0622 0.0679
Corr2 0.2148 0.1898 0.1643 0.1509 0.1512 0.1399

TS2VEC 0.0629 0.0661 0.0704 0.0723 0.0773 0.0821
SZSE

SimStock 0.2200 0.2361 0.2102 0.2057 0.1963 0.1817
Corr1 0.1522 0.1718 0.1704 0.1839 0.1713 0.1556
Corr2 0.1768 0.1807 0.1603 0.1575 0.1851 0.1771

TS2VEC 0.1488 0.1372 0.1444 0.1447 0.1318 0.1426
TSE

SimStock 0.1580 0.1750 0.1715 0.1808 0.1837 0.1772

Table C.1. Tracking errors volatility(TEV) of SimStock and baseline methods for tracking the performance of four
thematic ETFs (ARKK, SKYY, BOTZ, and LIT) using top k similar stocks from the US, SSE, SZSE, and TSE

exchanges. The best performing method for each k and exchange is highlighted in black, while the second best is in
underscore.
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Appendix D: Application to Portfolio optimization

Performance Statistics of Major Stock Indices

In this section, we presents the performance statistics of four major stock indices: S&P 500, JPX
Prime 150, SSE 100, and SZSE 100 in table D.1. The evaluation period spans from January 2023 to
Feb 2024. The S&P 500 and JPX Prime 150 indices exhibited positive returns during this period,
while the SSE 100 and SZSE 100 indices experienced negative returns.

The S&P 500 index, which represents the U.S. stock market, generated an arithmetic return
of 4.87% and a geometric return of 2.71%. The cumulative return over the evaluation period was
13.02%. The annualized standard deviation of 30.84% indicates the high volatility of the index. The
maximum drawdown of -31.32% highlights the substantial decline the index experienced during the
period. The monthly 95% Value at Risk (VaR) of -11.9% indicates the potential loss that could be
incurred with a 95% confidence level. The Sharpe ratio of 0.06 suggests a low risk-adjusted return
for the S&P 500 index.

The JPX Prime 150 index, representing the Japanese stock market, outperformed the other
indices with an arithmetic return of 13.69% and a geometric return of 11.61%. The cumulative
return over the evaluation period was 49.59%. The annualized standard deviation of 27.18% was
lower than that of the S&P 500 index, indicating relatively lower volatility. The annualized skewness
and kurtosis values of -0.04 and 2.89, respectively, were similar to those of the S&P 500 index. The
maximum drawdown of -23.73% was less severe compared to the other indices. The monthly 95%
VaR of -9.94% was also lower than that of the S&P 500 index. The Sharpe ratio of 0.58 indicates
a higher risk-adjusted return for the JPX Prime 150 index compared to the S&P 500 index.

The SSE 100 and SZSE 100 indices, representing the Chinese stock market, experienced negative
returns during the evaluation period. The SSE 100 index had an arithmetic return of -5.36% and a
geometric return of -6.99%, resulting in a cumulative return of -11.16%. The SZSE 100 index had
an arithmetic return of -7.81% and a geometric return of -9.86%, resulting in a cumulative return
of -21.02%. Both indices exhibited higher volatility compared to the S&P 500 and JPX Prime 150
indices, with annualized standard deviations of 39.13% and 37.39%, respectively. The annualized
skewness and kurtosis values were close to zero and slightly higher than three, respectively, indi-
cating a relatively symmetric return distribution with slightly heavier tails compared to a normal
distribution. The maximum drawdowns of -45.08% and -46.1% for the SSE 100 and SZSE 100
indices, respectively, were more severe compared to the S&P 500 and JPX Prime 150 indices. The
monthly 95% VaR values of -16.24% and -16.16% were also higher, indicating a higher potential
loss. The Sharpe ratios of -0.35 and -0.48 for the SSE 100 and SZSE 100 indices, respectively,
suggest poor risk-adjusted returns during the evaluation period.

Evaluation Method Exchange
Covariance Method S&P500 JPX Prime 150 SSE 100 SZSE 100

Arithmetic Return (%) 4.87 13.69 -5.36 -7.81
Geometric Return (%) 2.71 11.61 -6.99 -9.86

Cumulative Return (%) 13.02 49.59 -11.16 -21.02
Annualized SD (%) 30.84 27.18 39.13 37.39

Annualized Skewness -0.03 -0.04 0.04 0.01
Annualized Kurtosis 2.81 2.89 3.12 3.24

Maximum Drawdown (%) -31.32 -23.73 -45.08 -46.1
Monthly 95% VaR (%) -11.9 -9.94 -16.24 -16.16

Sharpe Ratio 0.06 0.58 -0.35 -0.48

Table D.1. Performance statistics of major stock indices from January 2023 to February 2024. The table presents
various return and risk measures for the S&P 500, JPX Prime 150, SSE 100, and SZSE 100 indices. The S&P 500

and JPX Prime 150 indices exhibited positive returns, while the SSE 100 and SZSE 100 indices experienced
negative returns during the evaluation period.
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Performance Metrics for Portfolio Optimization with 10 and 50 Stocks

This appendix presents the performance metrics for MVO with 10 and 50 stocks in the S&P 500
and JPX Prime 150 universes. The four portfolio construction methods evaluated are Simstock
Embedding (SS), Historical Covariance (HC), Shrinkage Method (SM), and Gerber Statistic (GS).

We investigate the performance of the four covariance estimation methods (SS, HC, SM, GS,
TS) for constructing portfolios with 10 and 50 stocks in the S&P 500 and JPX Prime 150 universes
at different target risk levels (24%, 27%, 30%, and 33%).

Tables C.3 and D.3 present the performance metrics for 10-stock portfolios in the S&P 500
and JPX Prime 150, respectively. In both universes, the SS method generally outperforms the
other methods across all risk target levels, achieving higher returns while maintaining similar risk
measures. As the risk target level increases, the returns and risk measures for all methods also
increase.

Tables C.5 and D.5 show the performance metrics for 50-stock portfolios in the S&P 500 and JPX
Prime 150, respectively. Similar to the 10-stock portfolios, the SS method demonstrates superior
performance compared to the other methods across all risk target levels in both universes. The HC
method has the second-best performance, followed by the SM, GS and TS methods. As the risk
target level increases, the returns and risk measures for all methods increase.

The consistent outperformance of the Simstock Embedding (SS) method in terms of returns for
both 10-stock and 50-stock portfolios in the S&P 500 and JPX Prime 150 universes highlights its
potential as an effective stock embedding technique for portfolio optimization.
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