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Liability-Driven Investment under Inflation Risk

Abstract

This paper introduces a novel model for liability-driven investment, specifically addressing in-

flation risk. Framed as a portfolio selection model with a Value-at-Risk (VaR) constraint, our

model aids fund managers in maximizing their utility of the funding ratio between assets and lia-

bilities. Exploiting an option-based approach, we derive the optimal investment strategy in closed

form. Using carefully selected parameters, we show that higher expected inflation rates prompt

a greater allocation to both classes of risky assets: stocks and inflation-linked index bonds. This

effect becomes more pronounced as the correlation between the two risky asset classes decreases.

Additionally, we find that the fund manager’s optimal investment strategies should change signif-

icantly based on the current funding ratio, with a shorter investment period resulting in greater

variability in these strategies.
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1 Introduction

In the dynamic and rapidly evolving world of finance, it has become increasingly important to

manage a portfolio that meets a fund manager’s liabilities while mitigating various economic risks.

The COVID-19 pandemic, in particular, has caused significant changes in the economic context,

leading to a surge of interest in liability-driven investment (LDI) strategies.

LDI strategies have diverged from conventional portfolio management paradigms, prioritizing

the management of liability risks. Traditionally, these strategies have been adopted by pension

funds and insurance companies with significant, specified future obligations. The conceptual frame-

work of LDI is grounded in the objective of meeting financial liabilities by precisely managing assets

and aligning them with the temporal and financial horizons of the liabilities.

The COVID-19 pandemic has further intensified the challenges and risks faced by the invest-

ment sector, particularly through its impact on inflation. The steady rise in the overall price level

of goods and services erodes purchasing power and distorts expected investment returns. Conse-

quently, it is crucial to adopt strategic measures to navigate these uncertain economic conditions

and safeguard the feasibility of LDI strategies.

This study aims to unravel the complexity of LDI strategies in light of inflation risks. We

present a comprehensive analysis of practical approaches that combine liability management with

strategic inflation hedging. This study offers a detailed examination of LDI in the context of

inflation risk, incorporating analytical models and theoretical foundations. It demonstrates a

reliable investment strategy of pension fund managers to mitigate the impact of inflation risk on

their portfolio.

Previous research, such as Grossman and Zhou (1996), has addressed the optimal portfolio

selection problem under the constraint of terminal wealth, showing that this restriction can af-

fect both the optimal wealth level and asset allocation. Additionally, Basak and Shapiro (2001)

examined dynamic portfolio selection problems in the presence of both Value-at-Risk (VaR) and

Expected Shortfall (ES) constraints. Their findings indicate that VaR might lead to a larger

exposure to risky assets, while ES can address the limitations associated with relying solely on

VaR. Based on their work, we employ the VaR constraint on the terminal wealth of pension fund

managers in our model.

As previously mentioned, the importance of LDI has spurred a significant amount of research.

Sharpe and Tint (1990) emphasized the need to simultaneously consider liabilities and wealth,

utilizing a mean-variance portfolio model with liability asset ratios. Building on Sharpe’s work,

Detemple and Rindisbacher (2008) introduced a dynamic model with respect to the funding ratio,

the ratio between the fund’s assets and liabilities, and find the optimal investment strategies in

the presence of a shortfall constraint. Ang et al. (2012) addressed the mean-variance portfolio

optimization problem with utility function constraints, treating it as a European put option, but

did not consider the dynamically-readjusted portfolio.

Regarding inflation, Fischer (1975) analyzed the demand for inflation-linked index bonds by

solving households’ optimization problems, taking inflation risk into account. He highlighted the
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significance of such indexed bonds and explained the rationale for introducing an inflation-linked

index bond market. Brennan and Xia (2002) tackled a dynamic asset allocation issue that included

stochastic interest rates and indexed bonds, demonstrating the importance of inflation-linked index

bonds for conservative and long-term investments.

When implementing LDI strategies, fund managers typically adopt a long-term investment

horizon. Given the significant impact of inflation risk in this context, it is crucial to consider its

effects when employing LDI strategies. However, there is currently no research that examines the

combined effects of LDI and inflation risk.

In this paper, we propose a portfolio selection model for LDI that considers inflation risk.

The assets included in this model are typical risky assets such as stocks, (almost) risk-free assets

such as money market funds, and inflation-linked index bonds, such as US Treasury Inflation-

Protected Securities (TIPS). The stochastic process governs the evolution of all assets, except for

money market funds. Similarly, liabilities are assumed to follow a time-varying, but deterministic,

process. The model incorporates a VaR constraint on the funding ratio, which aligns well with the

concept of LDI.

Using carefully selected parameters, we show that higher expected inflation rates prompt a

greater allocation to both classes of risky assets: stocks and inflation-linked index bonds. This

effect becomes more pronounced as the correlation between the two risky asset classes decreases.

Additionally, we find that the fund manager’s optimal investment strategies should change signif-

icantly based on the current funding ratio, with a shorter investment period resulting in greater

variability in these strategies.

Furthermore, we extend the option-based approach outlined in Kraft and Steffensen (2013)

and Jang and Park (2016) to accommodate multiple risky assets. This enhancement facilitates

the derivation of a closed-form optimal investment strategy, a task acknowledged for its inherent

difficulty in portfolio selection problems. This constitutes our technical contribution to the existing

literature.

The paper is structured as follows. Section 2 outlines the market economy considered in this

study, while Section 3 presents the optimization problem and its analytic solutions. Section 4

showcases notable empirical results, and Section 5 provides concluding remarks for this paper.

2 Financial Market

In the context of portfolio theory, two asset classes, so-called risk-free and risky assets, have been

employed for the financial market. In our paper, however, we employ an additional asset class,

which can be a hedging tool against inflation risk, in order to assess how inflation risk affects the

investment behaviors of market participants. Brennan and Xia (2002) suggest that the consumer

price index (CPI) is used as the (commodity) price level of inflation rates and assumes that it is

expressed as a diffusion process.

Following their idea, we assume that the price level of the inflation rate, It, is evolved by

dIt
It

= µIdt+ σIdWI,t
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where µI is the instantaneous expected inflation rate, σI is its volatility, and WI,t is a standard

Brownian motion on a probability space (Ω,F ,P). We employ an inflation-linked index bond (IIB),

which its price Pt at time t evolves as follows:

dPt

Pt
= Rdt+

dIt
It

= (R+ µI)dt+ σIdWI,t,

where R is the real interest rate. We assume that the inflation-linked index bond has exactly the

same risk source with the inflation risk.

We assume that the risky asset class comprises a total of n (n ≥ 1) stocks, Si,t (i ∈ {1, 2, · · · , n}),
and the risk-free asset class has a risk-free asset, Bt. Assume their price level processes are

dSi,t

Si,t
= µidt+ σidWi,t,

dBt

Bt
= rdt,

where µi (µi ≥ r) is the expected rate of return for stock i, and σi is their volatility, r is the

instantaneous nominal risk-free rate.

We impose the following correlation structure on the three asset classes:d⟨Wi,t,Wj,t⟩ = ρi,jdt for i, j ∈ {1, 2, · · · , n} and i ̸= j,

d⟨Wi,t,WI,t⟩ = ρi,Idt for i ∈ {1, 2, · · · , n}.

Here, ρi,j and ρi,I are assumed to be in the interval (−1, 1) for all i, j ∈ {1, 2, · · · , n}.

3 Model

3.1 Fund Manager’s Problem

One possible way to consider the liability-driven investment (LDI) in investment decision making

is to consider the funding ratio as a target variable. We first clarify the concepts of fund manager’s

asset holding and liability at each time spot. Suppose that πi,t (i ∈ {1, 2, · · · , n}) denote the

proportion of assets held in stock i and πI,t denote that in an inflation-linked index bond. Then,

the fund manager’s wealth Xt at time t evolves by following

dXt

Xt
=

n∑
i=1

πi,t
dSi,t

Si,t
+ πI,t

dPt

Pt
+
(
1−

n∑
i=1

πi,t − πI,t

)dBt

Bt
.

We assume the fund manager’s liability is deterministic over time.1 Therefore, we exploit an

integrable function f(t) to express the liability LT as deterministic process:

dLt = f(t)dt, L0 = l0, and l0 +

∫ t

0

f(s)ds > 0 for all t. (1)

1The assumption does not fully reflect the stochastic nature of changing liability characteristics, but

the determined liability value can be considered as the expected value of future liability. Sharpe and Tint

(1990) and Ang et al. (2012) and some others assume the liability follows a stochastic process. However,

these studies were limited by their inability to solve the portfolio choice problem analytically in a continuous

time. Our model has strengths in this regard.
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The funding ratio Ft can now be defined as the ratio between the fund manager’s total wealth

and liability:

Ft =
Xt

Lt
.

and it follows

dFt

Ft
=
( n∑

i=1

πi,t(µi − r) + πI,t(µI +R− r) + r − f(t)

l0 +
∫ t

0
f(s)ds

)
dt

+

n∑
i=1

σiπi,tdWi,t + σIπI,tdWI,t.

(2)

If the funding ratio is low, there is a shortage of assets compared to liabilities, indicating a

potential risk in asset and liability management (ALM) for the fund manager. In the context of

pension funds, it is reasonable to impose some constraints on the funding ratio to mitigate this risk.

Ang et al. (2012) also demonstrates the feasibility of controlling liability by limiting the funding

ratio, as evidenced by several countries implementing systematic funding ratio restrictions. On the

other hand, a high funding ratio implies a huge wealth compared to liabilities, and it is reasonable

that investments are made in the direction of maximizing the fund manager’s utility. To be precise,

the objective of our model is to maximize the expected utility of the funding ratio.

We assume that the fund manager has a utility preference of constant relative risk aversion

(CRRA) type, and thus, our problem can be stated as a problem to find the following value function

V by controlling her investment strategy Πt = (π1,t, π2,t, ..., πn,t, πI,t)
⊺: for the investment horizon

T ∈ (0,∞), the current time 0 < t < T , and current wealth x,

V (t, x) = max
Πt

Et

[
F 1−γ
T

1− γ

∣∣∣∣∣Xt = x

]
,

where γ (γ > 0, γ ̸= 1) is the coefficient of relative risk aversion, Et[·] is the conditional expectation
at time t under P−measure. We impose a value-at-risk (VaR) constraint on the funding ratio: for

k ≥ 0 and 0 < α ≤ 1,

P(FT > k) ≥ 1− α. (3)

3.2 Benchmark Case without the VaR Constraint

We examine the case where there exists no VaR constraint (call it the ‘benchmark’ case) to compare

it with our problem. Without any VaR constraint (3), the Bellman equation is simply

0 = max
Πt

{∂V
∂t

+
(
r +

n∑
i=1

πi,t(µi − r) + πI,t(µI +R− r) − f(t)

l0 +
∫ t

0
f(s)ds

)
Ft

∂V

∂F

+
1

2

∂2V

∂F 2
Π⊺

tΣΠtF
2
}
,

V (T, x) =
(x/LT )

1−γ

1− γ
.

where Σ = (σi,j)i,j∈{1,2,··· ,n,n+1} denotes the covariance matrix of n stocks and the inflation-linked

index bond (it is the (n + 1)-th asset corresponding to the (n + 1)-th row and column of the
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covariance matrix). The first-order condition reveals the optimal proportion Π as

Π∗
t = −Σ−1(µ− r1n+1)(∂V /∂F )

Ft(∂2V /∂F 2)
,

where µ = (µ1, µ2, ..., µn, µI + R)⊺ ∈ R(n+1)×1, 1n+1 = (1, ..., 1)⊺ ∈ R(n+1)×1. The value function

can be expressed through a deterministic function h with h(T ) = 1, as seen in the works of Merton

(1969, 1971) and Kraft and Steffensen (2013):

V (t, Ft) = h(t)
F 1−γ
t

1− γ
.

The optimal proportion can be rewritten as

Π∗
t =

Σ−1(µ− r1n+1)

γ
. (4)

Thus, the funding ratio evolution equation in (2) becomes

dFt =
(
r +

θ⊺θ

γ
− f(t)

l0 +
∫ t

0
f(s)ds

)
Ftdt+

ϕ⊺

γ
FtdWt, F0 = f0 > 0 (5)

where θ = Σ−1/2(µ−r1n+1), ϕ = ΓΣ−1(µ−r1n+1) = (ϕ1, ..., ϕn+1)
⊺ andWt = (W1,t, ...,Wn,t,WI,t)

⊺.

Here, Γ ∈ R(n+1)×(n+1) denotes the diagonal matrix with its (i, i)-th element Γi,i = σi for

i ∈ {1, 2, · · · , n} and Γn+1,n+1 = σI .

3.3 The Case in the Presence of the VaR Constraint: A Solution

Based on the option-based approach introduced by Kraft and Steffensen (2013), we develop its

multi-dimensional version. To the end, we first define the (n + 1) mutually-independent risky

assets, Ai,t (i ∈ {1, 2, · · · , n + 1}), by exploiting the original (n + 1) risky assets2: for standard

Brownian motions W̃i,t (i ∈ {1, 2, · · · , n+ 1}),

dAi,t

Ai,t
= µ̃idt+ σ̃idW̃i,t,

with d⟨W̃i,t, W̃i,t⟩ = dt for i ∈ {1, 2, · · · , n+ 1},

d⟨W̃i,t, W̃j,t⟩ = 0 for i, j ∈ {1, 2, · · · , n+ 1}, i ̸= j.

Then from (5), the funding ratio process Yt for the unconstrained case can be written as3

dYt =
(
r +

θ̃
⊺
θ̃

γ
− f(t)

l0 +
∫ t

0
f(s)ds

)
Ytdt+

θ̃
⊺

γ
YtdW̃t, Y0 = y0 > 0 (6)

where θ̃ = Σ̃
−1/2

(µ̃−r1n+1) = (θ̃1, ..., θ̃n, θ̃n+1), θ̃ = (µ̃1, ..., µ̃n, µ̃n+1) and W̃t = (W̃1,t, ..., W̃n,t, W̃I,t)
⊺.

Here, Σ̃ denotes the (n+1)-dimensional diagonal covariance matrix with its (i, i)-element Σ̃i,i = σ̃2
i

for i ∈ {1, 2, · · · , n+ 1}. Notice that the equation in (6) can be converted into4

dYt =
(
r + γσ2

Y − f(t)

l0 +
∫ t

0
f(s)ds

)
Ytdt+ σY YtdZt, (7)

2See the details in Appendix A.
3See the details in Appendix B.
4See the details in Appendix C.
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where

σY =

√√√√n+1∑
i=1

θ̃i
2

γ2
, and dZt =

θ̃
⊺

γσY
dW̃t.

Now we can define the liability-adjusted risk-neutral measure, Q, which leads us to

dYt =
(
r − f(t)

l0 +
∫ t

0
f(s)ds

)
Ytdt+ σY YtdZ̃t.

The drift term shows that, if we think of Yt as the price process of the underlying asset of a financial

derivative under the risk-neutral measureQ, the underlying asset has continuous dividend payments

with the rate of f(t)

l0+
∫ t
0
f(s)ds

, or equivalently, f(t)
Lt

.

Following Kraft and Steffensen (2013), we express the optimal terminal wealth by exploiting the

unconstrained optimal funding ratio process, Yt, and a claim function, g. To construct g, consider

the following argument concerning our optimal terminal wealth: if the terminal wealth does not

exceed the level of k, it is necessary to prepare for the potential downside risk by purchasing a put

option for the terminal wealth. However, the VaR constraint is intrinsically linked to confidence

levels, so, if the likelihood of not reaching the predefined threshold is lower than α, there may be

no need to prepare for the full extent of the downside risk. Therefore, the fund manager needs to

short an additional put option to disregard the significant decrease in the terminal wealth. The

argument can be utilized to construct g as

g(t, y) = y + (k − y)I{kα(t)<y<k}, (8)

where kα(t) is the level of k where it satisfies P(g(t, YT ) < k) = α, (P(·) denotes probability under

P−measure) and I{·} stands for the indicator function.5

Now, let Ψ be the present value of the optimal terminal wealth, then it can be expressed as

Ψ(t, y) = EQ
t [e

−D(t,r(t))g(t, YT )
∣∣Yt = y],

where

r(t) = r − f(t)

l0 +
∫ t

0
f(s)ds

, D(t, r(t)) =

∫ T

t

r(s)ds,

and EQ
t [·] stands for the conditional expectation at time t under Q−measure.6 On the other hand,

if we substitute the value function V for the funding ratio Ft of our constrained problem with a

function Φ for the unconstrained optimal funding ratio process Yt, then the argument in Kraft and

Steffensen (2013) gives us7

Φ(t, y) = Et[ũ(g(t, YT ))
∣∣Yt = y],

ũ(x) =
x1−γ

1− γ
− λI{x<k} for some λ.

5See the details in Appendix D.
6Therefore, the Black-Scholes equation for this case should be

∂Ψ(t, y)

∂t
= rΨ(t, y)− ry

∂Ψ(t, y)

∂y
− 1

2

ϕ⊺ϕ

γ2
y2 ∂

2Ψ(t, y)

∂y2
, and Ψ(T, y) = g(y).

7We aim to utilize the Lagrange multiplier λ to impose lower utility on the function when the constraint

is added, compared to the general case where the wealth is under k.
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The newly-defined function ũ adheres to the intuition that utility decreases significantly if the

optimal terminal wealth does not exceed the constraint.

Now the following theorem gives us the relationship between the present value of the optimal

terminal wealth, Ψ, and the utility function of the claim, Φ, and their analytic forms.

Theorem 3.1 The value function V satisfies

V (t,Ψ(t, y)) = Φ(t, y),

Ψ and Φ satisfy the equation in (9), and the optimal proportion π∗ = (π1,t, π2,t, ..., πn,t, πI,t) is

calculated by the relationship in (10):

∂Φ

∂y
(t, y) = eD(t,r̃(t))y−γ ∂Ψ

∂y
(t, y), (9)

r̃(t) = (1− γ)
(
r − f(t)

l0 +
∫ t

0
f(s)ds

+
γσ2

Y

2

)
,

π∗(t, y) =
y ∂Ψ

∂y (t, y)

Ψ(t, y)
Π∗

t . (10)

Moreover, Ψ(t, y) can be expressed as a closed form of (14) and Φ(t, y) can be expressed as a closed

form of (15), in Appendix E.

Proof. See Appendix E.

4 Numerical Results

4.1 Baseline Parameters

This section examines how the optimal investment strategy is affected by changing market param-

eters and funding ratio. To pursue our goal, we explore the simplest market structure with one

stock index (or a stock portfolio), i.e., n = 1, and an inflation-linked index bond (IIB).

We assume that the growth rate of liability is an affine function with respect to the expected

inflation rate µI :

f(t) = (β0 + β1µI)Lt, thus, Lt = l0e
(β0+β1µI)t,

for some constant parameters β0 and β1. The affine function we employ is a parsimonious structure

which can reflect the relationship between the expected inflation rate and the fund’s liability.

The baseline parameters we choose are

R = 0.02, r = 0.04, µ1 = 0.08, σ1 = 0.2, µI = 0.023, σI = 0.05, γ = 3,

ρ ≡ ρ1,I = −0.07, β0 = 0.04, β1 = 1, k = 1, α = 0.1, and T = 5.

The parameters mentioned above were set based on previous studies, such as Brennan and Xia

(2002) and Kwak and Lim (2014). To ensure all liabilities are paid at the end of the terminal,

we set the baseline funding ratio level for the VaR constraint, k, to 1 and the probability of not
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reaching the goal, α, to 10%. We set the baseline investment period, T , is 5 years, which is normally

considered as a mid-term period for pension fund managers.8

4.2 Optimal Asset Allocation

(Insert Figure 1 here.)

Based on the baseline parameters, Figure 1 depicts how the optimal investment allocation

among two risky assets changes relative to the funding ratio. As the funding ratio climbs, the

share allocated to the risky assets declines, in a sufficiently low funding ratio interval. However,

at a specific funding ratio, slightly below the target, the allocation to the risky assets stabilizes,

slightly surpassing the previous minimum, call it trough.

In times of low funding ratio, the most important for the fund manager is to heighten the

portfolio’s profitability to meet the target, even at the expense of elevated risk. This necessity

arises due to the VaR constraint indispensable for the fund manager, and thus, the demand of the

risky assets remains high when the funding ratio is sufficiently low. Approaching the target funding

ratio (denoted as k = 1 in this context), the fund manager progressively reduces the proportion

allocated to both the risky assets. As the goal nears, mitigating downside risk outweighs the pursuit

of additional returns for attaining the target securely. Consequently, the allocation to risky assets

decreases as the funding ratio escalates.

When the funding ratio slightly dips below the target, the optimal allocation reaches a plateau

marginally above the trough. This phenomenon occurs because the downside risk diminishes when

the funding ratio hovers slightly beneath the target, implying that achieving the goal becomes

comparatively manageable by invest all fund in the risk-free asset. Hence, the optimal investment

strategy for the fund manager is to strive for more return.

4.3 Effect of Investment Period

(Insert Figure 2 here.)

Figure 2 shows the optimal investment weights fluctuate across various investment periods

contingent upon the funding ratio. Drawing insights from the studies by Marston and Craven

(1998) and Edmans (2009), which suggests annual rebalancing as typical for pension funds, each

graph portrays the optimal investment strategies for the different investment periods: T − t =

5, 4, 3, 2, 1, respectively. It is noteworthy that the graph patterns echo those discussed in Section

4.2.

Furthermore, in Figure 2 we can observe more drastically-changing optimal asset allocation

curves for shorter investment periods. It shows that fund managers with less investment period

are more likely to use investment strategies that can achieve goals more rapidly and reliably.

8For instance, the National Pension Service (NPS) of Korea, which manages the world’s third-largest

fund, sets a mid-term investment period of 5 years.
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4.4 Effect of Expected Inflation Rate and Correlation

(Insert Figure 3 here.)

Figure 3 illustrates the relationship between asset allocation and the funding ratio concerning

different levels of the expected inflation rate, µI . As the expected inflation rate rises, the optimal

allocation of the two risky assets increases. As the expected inflation rate increases, the value of

the Inflation-liked Indexed Bonds (IIB) naturally rises. Subsequently, asset allocation towards the

IIB expands, and investment in the stock also slightly increases because the stock exhibits a weak

negative correlation, ρ = −0.07 with the IIB. The negative correlation implies that the two risky

assets, the stock and the IIB, have a meaningful hedging relationship with each other, and thus,

the investment in the stock should increase when the investment in the IIB increases.

(Insert Figure 4 here.)

Figure 4 depicts the influence of the correlation, ρ, between the two risky assets on the optimal

investment strategy. A lower correlation results in a higher investment allocation to both of the

two risky assets. This suggests that as the correlation decreases, the hedging effect becomes more

significant.

4.5 Sensitivity Analysis

(Insert Table 1 here.)

Table 1 depicts the optimal investment strategies for the different funding ratios, with various

parameters. Each row is derived from the baseline parameters, where the parameter of the respec-

tive row is adjusted by multiplying it with the given coefficient. Similar to the previous results,

the IIB demonstrates a greater sensitivity to changes than the stock. It is also evident that as the

fund manager’s risk aversion increases, the investment weight of the risky assets decreases, and as

the fund’s liability increases, the optimal fund manager invests a greater proportion of the fund in

the risky assets.

5 Conclusion

This paper explores a liability-driven investment strategy under inflation risk, considering three

asset classes: stocks, inflation-linked index bonds, and a risk-free asset. To tackle this issue, we

employ the CRRA utility function with respect to the funding ratio. In pursuit of LDI objectives,

we impose a VaR constraint on the funding ratio.

Using carefully selected parameters, we show that higher expected inflation rates lead to a

greater allocation to both classes of risky assets: stocks and inflation-linked index bonds. This

effect becomes more pronounced as the correlation between the two risky asset classes decreases.

Additionally, we find that the fund manager’s optimal investment strategies should change signif-

icantly based on the current funding ratio, with a shorter investment period resulting in greater
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variability in these strategies. Furthermore, we drive a closed-form optimal investment strategy of

our model by extending the option-based approach firstly outlined by Kraft and Steffensen (2013),

and this constitutes our technical contribution to the existing literature.
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Appendix

A Details for rebuilding the financial market

The objective of this section is to demonstrate that the (n + 1) risky assets with correlation can

be replaced by (n + 1) mutually-uncorrelated risky assets. In other words, for each i, a new

risky asset Ai,t must be identified that satisfies the following equation. Moreover, we can identify

oi = (o1,i, ..., on,i, on+1,i) that satisfies the following conditions:
dAi,t

Ai,t
= o1,i

dS1,t

S1,t
+ ...+ on,i

dSn,t

Sn,t
+ on+1,i

dSI,t

SI,t

o1,i + o2,i + ...+ on,i + on+1,i = 1

d⟨Ai,t, Aj,t⟩ = 0 for i ∈ {1, 2, · · · , n+ 1}, i ̸= j.

(11)

First, it is established that (n+1) mutually-uncorrelated Brownian motions can be derived from

the (n+1) Brownian motions in our original model through the Gram-Schmidt orthogonalization.

Consequently, there exists an (n+ 1)× (n+ 1) lower triangular matrix L, which satisfies

dW̃ t = LdWt.

Furthermore, L satisfies the following equation:

dW̃ t = LΓ−1(σ1W1,t, ..., σnWn,t, σIWI,t)
⊺.

If the i-th row ofLΓ−1 that satisfies the aforementioned equation is designated as õi = (õ1,i, ..., õn,i, õn+1,i),

then all conditions of (11) are satisfied when oi = õi/
∑n+1

j=1 õj,i.
9

Finally, define (n + 1) × (n + 1) matrix O = (o1, ...,on,on+1)
⊺,10 then if there exist π =

(π1, ..., πn, πI) and π̃ = (π̃1, ..., π̃n, π̃n+1) such that satisfy π̃ = Oπ then
∑n

i πi
dSi,t

Si,t
+ πI

dSI,t

SI,t

and
∑n+1

i π̃i
dAi,t

Ai,t
has same wealth process, which means that we can rebuild the market with

independent assets.

B Optimal investment weights and funding ratio process in

the rebuilt market

The unconstrained funding ratio process Yt is expressed as equation (2) in the rebuilt market, as

follows:
dYt

Yt
=
( n+1∑

i=1

π̃i,t(µ̃i − r) + r − f(t)

l0 +
∫ t

0
f(s)ds

)
dt+

n+1∑
i=1

σ̃iπ̃i,tdW̃i,t

where π̃i,t is proportion of each rebuilt risky assets. Then, value function Ṽ for the investment

period T ∈ (0,∞), the current time 0 < t < T , and current wealth x, by controlling her investment

9Under the assumption ρi,j , ρi,I ∈ (−1, 1) for all i, j ∈ {1, 2, · · · , n},
∑n+1

j=1 õj,i cannot be zero.
10O is a lower triangular matrix with no elements on the diagonal equal to zero. Consequently, since

the rank is (n+ 1), it can be demonstrated that O is indeed an invertible matrix.

13



strategy Π̃t = (π̃1,t, π̃2,t, ..., π̃n,t, π̃n+1,t)
⊺ is

Ṽ (t, x) = max
Πt

Et

[
Y 1−γ
T

1− γ

∣∣∣∣∣Xt = x

]
.

In this instance, the process outlined in Section 3.2 may be repeated in order to identify the optimal

proportion indicated as

Π̃
∗
t =

Σ̃
−1

(µ̃− r1n+1)

γ
.

Thus, The unconstrained funding ratio process Yt can be express as

dYt =
(
r +

θ̃
⊺
θ̃

γ
− f(t)

l0 +
∫ t

0
f(s)ds

)
Ytdt+

θ̃
⊺

γ
YtdW̃t, Y0 = y0 > 0.

C Construction of σY and Zt

In order to obtain the value of σy, it is necessary to compare the quadratic variation of the equations

in (6) and (7). First, the quadratic variation of the equation in (6) is calculated as follows:

d⟨Yt, Yt⟩ = d
〈 θ̃⊺

γ
YtdW̃t,

θ̃
⊺

γ
YtdW̃t

〉
=
( n+1∑

i=1

θ̃2i
γ2

)
Y 2
t dt. (12)

Next, the quadratic variation of the equation in (7) is

d⟨Yt, Yt⟩ = d⟨σY YtdZt, σY YtdZt⟩ = σ2
Y Y

2
t dt. (13)

The comparison of the two equations in (12) and (13) says that the equations in (6) and (7) are

identical when Zt and σY are given as

σY =

√√√√n+1∑
i=1

θ̃i
2

γ2
,

dZt =
θ̃
⊺

γσY
dW̃t.

D How to find kα(t)

If equation (8) is rephrased in which g(t, y) is defined, it may be expressed as

g(t, YT ) =


YT if YT ≥ k

k if kα(t) < YT < k

YT if YT ≤ kα(t)

Consequently, the P(g(t, YT ) < k) = α is equivalent to P(g(t, YT ) < kα(t)) = α and can be

expressed at time t in

P(g(t, YT ) < kα(t)) =
1√

2π(T − t)

∫ n(Yt)

−∞
exp

{
− w2

2(T − t)

}
dw = α
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where

n(y) =
1

σY
log
(kα(t)

y

)
−
(
µY − σ2

Y

2

)
(T − t),

µY = r + γσ2 − f(t)

l0 +
∫ t

0
f(s)ds

.

Consequently, kα(t) may be expressed as

kα(t) = Yt exp
{
σY

(
ℵ(α) +

(
µY − σ2

Y

2

)
(T − t)

)}
.

Here, ℵ(·) denotes the inverse cumulative distribution function of a standard normal distribution.

E Proof of Theorem 3.1

Ψ and Φ can be rewritten as

Ψ(t, y) = EQ
y,t[e

−D(t,r(t)){YT + (k − YT )I{YT<k} − (kα(t)− YT )I{YT<kα(t)} − (k − kα(t))I{YT<kα(t)}}]

= y + Put(t, y, r(t), σY , k)− Put(t, y, r(t), σY , kα(t))− (k − kα(t))e
−D(t,r(t))Q(YT < kα(t)).

(14)

Here, Q(·) means probability under Q−measure. And

Φ(t, y) = Ey,t[ũ(g(t, YT ))] = Ey,t

[
1

1− γ
{YT − (k − YT )I{kα(t)<YT<k}}1−γ − λI{x<kα(t)}

]
where

Put(t, y, r(t), σ, k) = ℵ(−d2(t, y, r(t), σ, k))ke
−D(t,r(t)) − ℵ(−d1(t, y, r(t), σ, k))y,

d1(t, y, r(t), σ, k) =
1

σ
√
T − t

[
log
(y
k

)
+D(t, r(t)) +

σ2(T − t)

2

]
,

d2(t, y, r(t), σ, k) = d1(t, y, r(t), σ, k)− σ
√
T − t.

Here, ℵ denotes the cumulative distribution function of the standard normal distribution.

Let

r̃(t) = (1− γ)

(
r − f(t)

l0 +
∫ t

0
f(s)ds

+
γσ2

Y

2

)
,

then

Φ(t, y) =
eD(t,r̃(t))

1− γ
Ey,t[e

−D(t,r̃(t)){Y 1−γ
T − (k1−γ − Y 1−γ

T )I{kα(t)1−γ<Y 1−γ
T <k1−γ}}]− λP(YT < kα(t))

=
eD(t,r̃(t))

1− γ
(y1−γ + Put(t, y1−γ , r̃, (1− γ)σ, k1−γ)− Put(t, y1−γ , r̃, (1− γ)σ, kα(t)

1−γ))

− eD(t,r̃(t))

1− γ
(k1−γ − kα(t)

1−γ + (1− γ)λ)e−D(t,r̃(t))P(YT < kα(t)).

Let

λ = (k − kα(t))kα(t)
−γ − k1−γ

1− γ
+

kα(t)
1−γ

1− γ
,

then,

Φ(t, y) =
eD(t,r̃(t))

1− γ
(y1−γ + Put(t, y1−γ , r̃(t), (1− γ)σ, k1−γ)− Put(t, y1−γ , r̃(t), (1− γ)σ, kα(t)

1−γ))

− eD(t,r̃(t))

1− γ
kα(t)

−γ(k − kα(t))e
−D(t,r̃(t))P(YT < kα(t)).

(15)
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Since we can get

∂

∂y
Put(t, y1−γ , r̃(t), (1− γ)σ, k1−γ) = (1− γ)y−γ ∂

∂y
Put(t, y, r(t), σ, k),

e−D(t,r̃(t)) ∂

∂y
P(YT < kα(t)) =

y−γ

kα(t)−γ
e−D(t,r(t)) ∂

∂y
Q(YT < kα(t)),

we can show that
∂Φ

∂y
(t, y) = eD(t,r̃(t))y−γ ∂Ψ

∂y
(t, y).

According to Kraft and Steffensen (2013), if the conditions above are satisfied, the optimal invest-

ment weight of Ai,t can be expressed as

π̃(t, y)∗ =
y ∂Ψ

∂y (t, y)

Ψ(t, y)
Π̃

∗
t .

The final optimal investment weight can be obtained through the last paragraph of A, which

shows the relationship between the optimal investment weight of Ai,t and the actual optimal

investment weight of

π(t, y)∗ = O−1π̃(t, y)∗ =
y ∂Ψ

∂y (t, y)

Ψ(t, y)
O−1Π̃

∗
t =

y ∂Ψ
∂y (t, y)

Ψ(t, y)
Π∗

t .
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Figures and Tables

Figure 1: Optimal asset allocation at t = 0 with the baseline parameters.
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Figure 2: Optimal asset allocation changes according to investment period with the base-

line parameters.
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Figure 3: Optimal asset allocation changes according to expected inflation rate with the

baseline parameters.
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Figure 4: Optimal asset allocation changes according to the correlation between the two

risk assets with the baseline parameters
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Table 1: Results of the sensitivity analysis

Funding Ratio 0.3 0.5 0.7 0.9 1.0 1.2

Parameter Value

Baseline
Stock 0.3901 0.3456 0.3349 0.3387 0.3414 0.3443

IIB 0.7134 0.6320 0.6124 0.6195 0.6244 0.6296

R 1.05 Stock 0.3874 0.3425 0.3314 0.3347 0.3372 0.3396

IIB 0.4126 0.3648 0.3529 0.3565 0.3591 0.3618

0.95 Stock 0.3830 0.3335 0.3189 0.3211 0.3233 0.3257

IIB 0.5552 0.4834 0.4623 0.4654 0.4687 0.4721

γ 1.05 Stock 0.3960 0.3564 0.3492 0.3542 0.3570 0.3599

IIB 0.5740 0.5166 0.5061 0.5134 0.5175 0.5217

0.95 Stock 0.3903 0.3449 0.3337 0.3370 0.3395 0.3420

IIB 0.5657 0.5000 0.4837 0.4885 0.4921 0.4957

α 1.05 Stock 0.3877 0.3434 0.3327 0.3365 0.3392 0.3420

IIB 0.5619 0.4978 0.4823 0.4878 0.4916 0.4957

0.95 Stock 0.3992 0.3483 0.3336 0.3363 0.3388 0.3416

IIB 0.5303 0.4627 0.4432 0.4468 0.4502 0.4539

σI 1.05 Stock 0.3790 0.3405 0.3330 0.3373 0.3398 0.3423

IIB 0.6024 0.5411 0.5292 0.5361 0.5401 0.5441

0.95 Stock 0.2481 0.2699 0.3074 0.3319 0.3381 0.3420

IIB 0.3597 0.3913 0.4456 0.4811 0.4901 0.4958

β0 -1 Stock 0.3151 0.3019 0.3164 0.3328 0.3380 0.3420

IIB 0.4568 0.4376 0.4587 0.4825 0.4900 0.4958

0 Stock 0.3890 0.3442 0.3332 0.3368 0.3393 0.3420

IIB 0.5639 0.4989 0.4830 0.4882 0.4919 0.4957

1 Stock 0.3044 0.2962 0.3145 0.3325 0.3380 0.3420

IIB 0.4413 0.4294 0.4559 0.4820 0.4899 0.4958

β1 -1 Stock 0.3462 0.3190 0.3228 0.3341 0.3384 0.3420

IIB 0.5018 0.4625 0.4679 0.4844 0.4905 0.4957

0 Stock 0.3890 0.3442 0.3332 0.3368 0.3393 0.3420

IIB 0.5639 0.4989 0.4830 0.4882 0.4919 0.4957

1 Stock 0.3790 0.3405 0.3330 0.3373 0.3398 0.3423

IIB 0.6024 0.5411 0.5292 0.5361 0.5401 0.5441
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