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ABSTRACT

This paper explores the potential use of machine learning models in crude oil realized

volatility forecasting through a variety of empirical analyses and robustness checks.

Although the conventional Heterogeneous Autoregressive (HAR) model is widely ac-

cepted, the machine learning models with the HAR factors can significantly improve

the forecasting performance. We also found that macroeconomic variables such as

supply factors, implied volatility indices and uncertainty factors can be useful in

forecasting oil volatility.
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1. Introduction

Volatility is a key characteristic of commodity markets, particularly evident in the oil

sector. Historically, oil prices have been subject to considerable fluctuations, driven by

a variety of factors including geopolitical unrest, imbalances in supply and demand,

market speculation, and major economic changes(Hamilton, 2009). The advent of the

COVID-19 pandemic has exerted a profound impact on the commodity market, leading

to ”unprecedented disruptions in worldwide supply chains, dramatic shifts in oil demand,

and increased economic instability.”

These events have triggered severe swings in oil prices, influencing a wide spectrum

of market stakeholders from traders and investors to policymakers. The unparalleled

drop in demand, severe conditions in the job market, and restrained consumer spending

resulting from the COVID-19 crisis are unparalleled in living history. A stark example of

this was when dwindling demand drove oil future prices into negative figures, reaching

-$36.98 in May 2020.

The extraordinary plunge in oil prices is not to be underestimated due to the consid-

erable economic repercussions it carries for industries reliant on oil(Apergis and Miller,

2009; and Kilian, 2009).1 Even prior to the global ramifications of COVID-19, uncer-

tainty around oil prices had been on a gradual rise over the past decades, posing a

substantial risk to the global economy.

This paper explores the possibility of the potential usage of machine learning in the

field of volatility forecasting. Comparison of various forecasting models with a rich set of

data and various forecasting horizons guides us to the fact that a combination of conven-

tional models and machine learning techniques can improve the forecasting performance

in out-of-sample. Ma et al. (2017) and Ma et al. (2018) investigated autoregressive-

type forecasting models for oil price volatility, including the heterogeneous autoregres-

sive (HAR) models. However, they covered only autoregressive-type models and did

not check the time consistency of the forecasting performance.Unfortunately, although

1The 1980s oil glut, for example, has caused a blow to the exports of the Soviet Union, and it may have been
a factor in accelerating the collapse of the Soviet Union. On the other side, many crop prices also remained in
the doldrums amid weak raw material prices, which resulted in a recession in the U.S. agricultural industry,
leading to bankruptcy in many small banks. As another example, the increased U.S. shale supply caused a
sharp fall in oil prices again in 2014, which has yet to recover since then. As a result, Russia fell into recession,
and growth in the Middle East slowed.
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HAR-X type models are successful in-sample prediction, the performance of HAR-X is

not as effective as that of other machine learning models in out-of-sample. We show that

the machine learning models with factors in the HAR model as input variables have the

potential to enhance the out-of-sample forecasting performance with one-week, bi-week,

and month ahead horizons.

We examine the out-of-sample forecasting performance of ten different models as well

as their robustness with four different metrics: R̂2
oos score, R2

oos score, Model Confidence

Set (MCS) test (Hansen et al. (2011)), and Diebold-Mariano (DM) test (Diebold and

Mariano, 2002). We consider the period from April 2002 to April 2024 to include the

Great Recession and COVID-19.

The statistic R̂2
oos is employed to compare the forecasting residual with the forecast-

ing residual of the benchmark model, designated as HAR. The application of machine

learning models incorporating HAR factors, such as random forest regression (RFR) or

ElasticNet, has the potential to achieve notably high values of R2
oos in out-of-sample. We

found that the longer forecast horizon tends to yield more accurate forecasts of models,

which may be attributed to the presence of noise due to data frequency. Additionally,

the performance orders can vary across different forecast horizons. The performance

of conventional HAR and HAR-X models illustrates the distinct importance of lagged

variables for different horizons. Exposure to varying levels of autocorrelation effects may

contribute to the observed performance order differences across different horizons.

While R̂2
oos is based on the benchmark model, R2

oos compares the forecasting residual

with the variance of true values in out-of-sample (Guo and Lin (2020)). It measures

the predictability of the model by residuals between predicted values and true values.

With R2
oos, we can compare the forecasting performance of different lengths of the test

period. In our study, the performance of the conventional HAR model decreases as the

period becomes more recent. This might suggest that the importance of factors other

than lagged variables, that is, memory or momentum variables, has increased recently.

In contrast, some machine learning models such as the random forest regression and the

recurrent neural network model, show very stable R2
oos scores even during the period of

COVID-19.

In addition, we construct a rich set of data including implied volatility indices and
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uncertainty factors, following Degiannakis and Filis (2022), Delis et al. (2022), Delis

et al. (2023), Miao et al. (2017), Wei et al. (2017), and Ma et al. (2018).2 As expected in

Ma et al. (2018), appending uncertainty factors help models improve the out-of-sample

performance and its robustness. Furthermore, the number of selected features plays a

crucial role in performance. Linear models like HAR-X, LASSO, and ElasticNet tend to

perform better as more features are included. In contrast, nonlinear machine learning

models such as RFR and GBR achieved high out-of-sample scores with just 20 features,

suggesting that too many features could negatively impact their performance. Deep

learning models, including ANN and RNN, show more variable results. This might be

due to the nonlinear relationship between realized volatility of crude oil and uncertainty

indices.

Our study is distinct from other research in some significant respects. First, we incor-

porated uncertainty factors, which permitted us to examine a more expansive spectrum

of variables that influence oil volatility. Secondly, we employed feature selection tech-

niques with diverse machine learning models to examine the extensive range of models

and the vast number of features. Moreover, our models are all interpretable, enabling us

to ascertain which feature plays a pivotal role in predicting oil prices. Finally, our meth-

ods produced favorable outcomes, demonstrating the efficacy of our approach. These

concepts offer invaluable insights and a more efficient research methodology than pre-

vious studies.

The remaining sections of the paper are organized as follows. In section 2, we illustrate

input data and data preprocessing procedure. In section 3, we explain the training

procedure of various forecasting models. In section 4, we present the out-of-sample R̂2
oos

score, R2
oos score, MCS test, and DM test, as the forecasting performance measures, and

analyze the results of the forecasting models. We also present which feature is chosen

in the models frequently.
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Factor Group Individual Variable Frequency Source

Prices

WTI (West Texas Intermediate) future prices Daily Energy Information Administration
WTI spot prices Daily Energy Information Administration
Brent oil spot prices Daily Energy Information Administration
NGL (Natural Gas Liquids) future prices Daily Energy Information Administration
NGL spot prices Daily Energy Information Administration

Supply
Factors

Global crude oil production Monthly JODI-Oil Database
Global crude oil stock Monthly JODI-Oil Database
Global crude oil export Monthly JODI-Oil Database
Total OPEC production capacity Monthly Energy Information Administration
Capacity utilization rate Weekly Energy Information Administration

Demand
Factors

Global crude oil import Monthly JODI-Oil Database
Liquid fuels consumption in World Monthly Energy Information Administration
PPI in China Monthly Federal Reserve Bank of St. Louis Economic Database
PPI in US Monthly Federal Reserve Bank of St. Louis Economic Database
PPI in EU Monthly Federal Reserve Bank of St. Louis Economic Database

Financial
Factors

S&P 500 Adjusted Close Daily Yahoo Finance
Japan / US Foreign Exchange Rate Daily Federal Reserve Bank of St. Louis Economic Database
US / Euro Foreign Exchange Rate Daily Federal Reserve Bank of St. Louis Economic Database
US / UK Foreign Exchange Rate Daily Federal Reserve Bank of St. Louis Economic Database
China / US Foreign Exchange Rate Daily Federal Reserve Bank of St. Louis Economic Database
Federal Funds Rate Monthly Federal Reserve Bank of St. Louis Economic Database
MSCI World Standard (Large+Mid Cap) Monthly MSCI

Implied Volatility Indices

CBOE Volatility Index Daily Yahoo Finance
CBOE Crude Oil Volatility Index Daily Yahoo Finance
CBOE DJIA Volatility Index Daily Yahoo Finance
CBOE Gold Volatility Index Daily Yahoo Finance

Uncertainty
Factors

Global Economic Policy Uncertainty (current) Monthly Davis (2016), https://www.policyuncertainty.com
Global Economic Policy Uncertainty (ppp) Monthly Davis (2016), https://www.policyuncertainty.com
Daily Infectious Disease Equity Market Volatility Tracker Daily Baker et al. (2019) and Baker et al. (2020) https://www.policyuncertainty.com
US Economic Policy Uncertainty in Economic Policy Uncertainty Monthly Baker et al. (2016), https://www.policyuncertainty.com
US Economic Policy Uncertainty in Monetary Policy Monthly Baker et al. (2016), https://www.policyuncertainty.com
US Economic Policy Uncertainty in Fiscal Policy (Taxes or spending) Monthly Baker et al. (2016), https://www.policyuncertainty.com
US Economic Policy Uncertainty in Taxes Monthly Baker et al. (2016), https://www.policyuncertainty.com
US Economic Policy Uncertainty in Government Spending Monthly Baker et al. (2016), https://www.policyuncertainty.com
US Economic Policy Uncertainty in Healthcare Monthly Baker et al. (2016), https://www.policyuncertainty.com
US Economic Policy Uncertainty in National Security Monthly Baker et al. (2016), https://www.policyuncertainty.com
US Economic Policy Uncertainty in Entitlement Programs Monthly Baker et al. (2016), https://www.policyuncertainty.com
US Economic Policy Uncertainty in Regulation Monthly Baker et al. (2016), https://www.policyuncertainty.com
US Economic Policy Uncertainty in Financial Regulation Monthly Baker et al. (2016), https://www.policyuncertainty.com
US Economic Policy Uncertainty in Trade Policy Monthly Baker et al. (2016), https://www.policyuncertainty.com
US Economic Policy Uncertainty in Sovereign Debt and currency crises Monthly Baker et al. (2016), https://www.policyuncertainty.com
World Uncertainty Index Quarterly Ahir et al. (2018), https://worlduncertaintyindex.com/
World Pandemic Uncertainty Index Quarterly Ahir et al. (2018), https://worlduncertaintyindex.com/

Table 1. There are six groups of data - prices, supply factors, demand factors, financial factors, implied
volatility indices, and uncertainty factors. The dependent variable is WTI future price, and the rest of the data
are explanatory variables used in the models.

2. Data

In line with Miao et al. (2017), Wei et al. (2017), and Ma et al. (2018), we construct the

realized volatility of oil future contracts on the West Texas Intermediate (WTI) crude

oil as follows:

RVt =

√√√√ Nt∑
j=1

r2
t,j , for rt,j = 100 × log(pt,j/pt,j−1),

where Nt indicates the number of business days in the t-th week, and pt,j represents the

daily WTI future prices on j-th business day of the t-th week. We consider the period

from April 2002 to April 2024 to include the Great Recession and COVID-19. Because

each future contract must be exercised at maturity, to estimate continuous volatility,

daily prices are calculated based on the roll-over rule (Schwager, 2017).3 The set of

2Kilian and Hicks (2013) argued that repeated shocks of oil demand cause the oil price shock. Other plentiful
researches also assert interdependence between the oil price uncertainty and the structural fluctuation of global
economic activity (Herrera et al., 2019; and Caggiano et al., 2020).

3We follow ‘Definitions, Sources, and Explanatory Notes’ in the EIA webpage (https://www.eia.gov/dnav/
pet/TblDefs/pet_pri_fut_tbldef2.asp) to calculate continuous WTI future prices. On each monthly roll-over
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uncertainty indices is more closely associated with macroeconomic trends than with

the specific behavior of the oil market. Consequently, a sudden change in these indices

will require a period of adjustment in the oil market. We hypothesize that uncertainty

indices do not exert an immediate (daily) influence on oil prices, and thus, we anticipate

weekly price movements.

A total of 42 explanatory variables were employed in the analysis (see Table 1). Each

explanatory variable is classified into one of six categories: prices, supply factors, demand

factors, financial factors, implied volatility indices, and uncertainty factors. We apply a

difference transformation to the data that does not satisfy stationarity criteria over the

entire period. For higher-order differences (greater or equal to 3), we set the order of

difference to 2 to preserve information. Additionally, we consider the publication lags

of the explanatory variables to mitigate potential look-ahead bias in the forecast.

Prices West Texas Intermediate (WTI) has a long-run equilibrium relationship with

Brent (Hammoudeh et al., 2008), and close interconnection with natural gas (Brown

and Yucel, 2008). We adopted the future and spot prices of WTI (only spot prices),

Brent, and natural gas liquid (NGL) from the US Energy Information Administration

(EIA), as explanatory variables.

Supply Global crude oil data, including production, stock, and export, are from

world-primary data in the JODI-Oil Database. Oil supply and demand are accepted

factors to describe the oil price dynamics (Kilian, 2009; Ma et al., 2018; Wei et al.,

2017). Hallock Jr et al. (2004) showed a strong relationship between oil production and

exportation. Hamilton (2009) asserted the importance of oil inventory to prices. Total

OPEC production capacity and Capacity utilization rate are from EIA.

Demand Demand factors have a significant influence on oil prices (Hamilton, 2009;

and Kilian, 2009) The demand factors consist of the global crude oil import from the

JODI-Oil Database, liquid fuel consumption in the World from the EIA, and the pro-

ducer Price Index (PPI) in China, the US, and the EU from the Federal Reserve Bank

(FRB) of St. Louis Economic Database.

day, the oil price is adjusted by the price difference between the future contract with the first-nearest-to-maturity
and the future contract with the second-nearest-to-maturity. The weekly realized volatility is calculated by the
squared sum of daily WTI returns on each last business day of the week. Each contract expires on the third
business day before the 25th calendar day. When the 25th calendar day is not a business day, the contract
expires on the third business day before the latest business day prior to the 25th calendar day. We excluded
the date when the oil price became negative. More details about the roll-over rule are in Appendix A.
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Financial Factors Following Miao et al. (2017), financial factors include the federal

fund rate, the daily exchange rate of Japan-US, US-EU, US-UK, and China-US from

the FRB, the S&P 500 Adjusted Close data from Yahoo Finance and MSCI World

Standard (Large+Mid Cap) from MSCI.

Implied Volatility Indices As showed in the Delis et al. (2022) and Delis et al.

(2023), the implied volatility indices have potential explanatory power in forecasting the

oil implied volatility index. In this regard, four implied volatility indices are included:

the CBOE Volatility Index (VIX), the CBOE Crude Oil Volatility Index (OVX), the

CBOE DJIA Volatility Index (VXD), and the CBOE Gold Volatility Index (GVZ). The

data were collected from Yahoo Finance.

Uncertainty Factors Ma et al. (2018) also considers uncertainty indices when

handling the oil. Following Ma et al. (2018), Baker et al. (2016), Baker et al. (2019),

Baker et al. (2020), Ahir et al. (2018), and Davis (2016) with their websites, we use

various uncertainty indices as an input.4

3. Forecasting Models

3.1. Cross Validation

In the time-series model, preventing the use of future information is a pertinent first

step. Similar to Gu et al. (2020), we construct the out-of-sample data and design cross-

validation as shown in Fig 1. For each time, we stack s historical data, each of which

has length-w training data. With s × w training input and corresponding s × 1 output,

standard cross-validation is performed to find the best hyperparameters.

Now one-step ahead length-w data (test data or the out-of-sample data) is chosen

to be a test input. With the in-sample trained model and the one-step-ahead length-w

input, the model predicts one-week volatility. After prediction, we reset the model and

move our s set of historical data forward, and follow the same procedure. This process

guarantees that models do not use future information as input. The number of samples

4Economic uncertainty data were retrieved from https://www.policyuncertainty.com/ and https://
worlduncertaintyindex.com/. This webpage includes data from numerous papers covering economic policy
uncertainty data (EPU), categorical economic policy uncertainty data, world uncertainty index (WUI) to even
infectious disease data.
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Figure 1. Walk-Forward Cross-Validation A single forecast on dependent variable yt+1 in time t + 1 is
based on explanatory variables in the time interval [t−w +1, t]. Regardless of the forecasting model choice, this
single forecast needs parameters for each explanatory variable in the w-windowed time interval. The estimation
of the corresponding parameters for each explanatory variable uses s-sample points by minimizing the objective
function, e.g., the sum of the least square, of in-sample residuals. When w is large, a single forecast considers
more past information. A large number of samples s would stabilize parameter estimation, but it would catch
up with recent changes slowly.

(s) and windows (w) is chosen to contain enough information from the past but not

overfit to the training data (Fig 1).5

3.2. Forecasting Models

Machine learning models are becoming more prevalent in the field of forecasting (Gu

et al., 2020; Ghoddusi et al., 2019). We use both time series models - the heteroge-

neous autoregressive with exogenous variables (HAR-X), the time-varying parameter

heterogeneous autoregressive (TV-HAR) - and various machine learning models.6 The

HAR-X model from Corsi (2009) is a benchmark. The reader can find the analysis on

various machine learning models - the least absolute shrinkage and selection operator

(LASSO), the elastic net (EN), the decision tree regression (DTR), the random forest

regression (RFR), the gradient boosting regression (GBR), the artificial neural network

(ANN), and the recurrent neural network (RNN). Detailed descriptions of how we train

models are in Appendix B.

5In this study, all models use w = 1, s = 52.
6The reader should beware that depending on the operating system, version of packages, type of CPUs,

and other factors may affect the results. We have tested in different environments, and in most cases, the
differences were relatively insignificant. Additionally, alternative models, including ARIMA-X and principal
component regression (PCR), were evaluated. However, the outcomes were unsatisfactory, and thus, they have
been excluded from this paper.
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Heterogeneous Autoregressive with Exogenous Variables

Corsi (2009) found the stylized facts about the long memory and multi-scaling be-

havior of the realized volatility. The HAR-X contains two explanatory variables: weekly

and monthly realized volatility. These variables represent short-term and medium-term,

respectively.7 The HAR-X is defined by

R̂V
W

t+1 = cW + βW,wRV W
t + βW,mRV W

t−4:t + βW,qRV W
t−13:t

+
w−1∑
k=0

n∑
m=1

ηW,m,t−kxm,t−k + ϵW,t+1

R̂V
2W

t+1 = c2W + β2W,wRV 2W
t + β2W,qRV 2W

t−6:t + β2W,yRV 2W
t−26:t

+
n−1∑
k=0

n∑
m=1

η2W,m,t−kxm,t−k + ϵ2W,t+1

R̂V
M

t+1 = cM + βM,W RV M
t + βM,qRV M

t−3:t + βM,yRV M
t−12:t

+
n∑

k=0
ηm,t−k

m=1 xm,t−k + ϵM,t+1

where RV W
t , RV 2W

t , and RV M
t are the weekly, bi-weekly, and monthly realized

volatility based on daily return, respectively. For the weekly realized volatility RV W
t ,

the monthly average realized volatility RV W
t−4:t and the quarterly realized volatility

RV W
t−13:t, which are the average RV from t−4 to t and t−13 to t respectively, represent

the short-term variable and long-term variable. Every model below also contains

realized volatility factors as explanatory variables. The parameter estimation process

is the same as the linear regression.8

Time-Varying Parameter Heterogeneous Autoregressive

The time-varying parameter heterogeneous autoregressive (TV-HAR) is an extension

of the HAR, considering the parameter changes over time. This method is commonly

used to enhance the forecasting power of the HAR-type models (Delis et al. (2022)). In

7The original HAR contains daily realized volatility to forecast daily realized volatility. However, our goal in
this paper is to forecast the weekly realized volatility. So, we exclude the daily realized volatility factor.

8Therefore, machine learning models are the extended version of the HAR, in the aspect of variable usage.
When the machine learning models do not consider realized volatility factors as explanatory variables, they
perform poorly.
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TV-HAR, the coefficients in the equation above change to time-varying coefficients as

follows:

R̂V
W

t+1 = cW + βW,w,tRV W
t + βW,m,tRV W

t−4:t + βW,q,tRV W
t−13:t

+
w−1∑
k=0

n∑
m=1

ηW,m,t−kxm,t−k + ϵW,t+1

R̂V
2W

t+1 = c2W + β2W,w,tRV 2W
t + β2W,q,tRV 2W

t−6:t + β2W,y,tRV 2W
t−26:t

+
n−1∑
k=0

n∑
m=1

η2W,m,t−kxm,t−k + ϵ2W,t+1

R̂V
M

t+1 = cM + βM,W,tRV M
t + βM,q,tRV M

t−3:t + βM,y,tRV M
t−12:t

+
n∑

k=0
ηm,t−k

m=1 xm,t−k + ϵM,t+1

The time-varying coefficients can be modeled using various methodologies, such as

the Markov Chain Monte Carlo (MCMC) method, the Kalman filter method, and the

kernel smoothing method. In this research, we apply the kernel smoothing method to

estimate the parameters.

Least Absolute Shrinkage and Selection Operator

Least Absolute Shrinkage and Selection Operator (LASSO) reduces the risk of over-

fitting by adding a penalty term to the cost function, and it performs variable selection:

min
ϕ,η

{(
RVt+1 −

( w−1∑
i=0

ϕiRVt−i +
w−1∑
k=0

n∑
m=1

ηm,t−kxm,t−k

))2}
,

subject to
∑

|ϕ| +
∑

|η| < c (constant).

It also has a useful application in the field of energy forecasting, such as research on

the oil price predictability in Miao et al. (2017) and Ma et al. (2018).

Elastic Net
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Elastic Net is the combinatorial extension of the Ridge and the Lasso. Although the

Ridge and the Lasso enhance the prediction accuracy with the bias-variance tradeoff,

they have different performance advantages depending on the data. The Lasso is better

when there are fewer significant variables, and the Ridge is better when there are

vice versa. The Elastic Net considers both penalty terms of the Ridge and the Lasso.

Because Elastic Net has both L1 and L2 norms, it can perform well with large data.

Decision Tree Regression

Decision Tree Regression (DTR) builds models in the form of a tree structure by

dividing the data set into smaller subsets while gradually elaborating related decision

trees. The predicted outcome becomes continuous real values.

Hastie et al. (2009) formally describes this concept as follows: when X is an input

variable and defining half-planes as R1(j, s) = {X|Xj ≤ s} and R2(j, s) = {X|Xj > s},

DTR tries to find the splitting variable j and split point s that solve

min
j,s

[
min

c1
Σxi∈R1(j,s)(yi − c1)2 + min

c2
Σxi∈R2(j,s)(yi − c2)2

]
.

where yi’s are true values. After finding the best split, repeat this process for each split

region. They further discuss some important questions like how large a should tree

grow. See Hastie et al. (2009) for the full detailed explanation.

Random Forest Regression

Random Forest Regression (RFR) is the learning algorithm that uses an ensemble

learning method for several decision trees. Even if trees can make an excellent predictive

model, they can be very noisy. RFR generates multiple decision trees and averages

them to reduce noise and the risk of overfitting. See Hastie et al. (2009) for detailed

descriptions.

Gradient Boosting Regression

Gradient Boosting Regression (GBR) produces a model from an ensemble of weak

predictive models. One obvious candidate for the weak predictor will be the tree. The
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gradient boosting algorithm updates its predictor by calculating the negative gradient

of the loss criteria, then regress a tree to those residuals. A detailed explanation for

the algorithm is in Hastie et al. (2009).

Artificial Neural Network

Artificial Neural Network (ANN) is a computational model inspired by the human

brain, designed to recognize patterns and make decisions. It consists of interconnected

layers of nodes (neurons), including an input layer, one or more hidden layers, and an

output layer. Each connection has a weight that is adjusted during training, allowing

the network to learn from data. See Goodfellow (2016) for more details.

Recurrent Neural Network

Recurrent Neural Network (RNN) is a specific type of artificial neural network de-

signed to process sequential data. Unlike feedforward networks, RNNs have connections

that form directed cycles, allowing them to retain information from earlier inputs in the

sequence. This makes RNNs particularly effective for tasks like time series prediction.

For more details, see Goodfellow (2016).

Using all input data to train models often raises several caveats. The most prominent

issue will be training time. As the number of explanatory variables rises, models suffer

from a surge in training time. Also, unnecessary variables could hurt the out-of-sample

performance. To prevent this, we select features for each sample window before we start

training the model.9 During training, we use the grid search method to find optimal

hyperparameters.

For feature selection, we choose the f-regression method. It first computes the corre-

lation between the dependent variable and each factor. Then it is converted to F -score,

and p-value of F -score (Pedregosa et al. (2011)). The linearity of the f -regression method

can quickly calculate the effect of each factor on dependent variables, which is adequate

in this paper that uses multiple factors. After calculating F -scores and p-values, we

9Observing the high performance of the HAR-X model, we make an educated guess that the lagged volatility
and mean of volatility have high explanatory power. These variables are exempt from the feature selection
stage and always belong to the set of explanatory variables.
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choose a defined number of factors from the highest score. We always include lagged

variables as explanatory variables even if the result of the f-regression method rejects

their efficiency to make the machine learning models more coherent with HAR-X.

4. Empirical Analysis

4.1. The Measure of Evaluation and Robustness

Although the R2 measure is more widely accepted in linear models, it is one of the most

intuitive measures for evaluating the performance of a model. In this paper, we examine

two R2 measures: R̂2
oos score and our version of the out-of-sample R2

oos score. Let yt, ȳt,

ŷt and ŷBench,t denote true values, the average of true values, predicted values, and the

predicted values of the benchmark model HAR, respectively. First, conventionally, R2
oos

score is defined as:

R2
oos = 1 −

∑
t(yt − ŷt)2∑
t(yt − ȳt)2

Numerous literature argue that ȳt should be replaced by the benchmark forecast, ŷBench,t

(e.g., Christiansen et al. (2012), Wang et al. (2018)). Although the historical average is

powerful for forecasting asset returns, it fails to predict asset return volatility. However,

the benchmark model HAR has shown a slight decline in its forecasting performance

compared to other models recently. So, we introduce a more strict performance measure,

R̂2
oos score:

R̂2
oos = 1 −

∑
t(yt − ŷt)2∑

t(yt − ŷBench,t)2

Second, we define ȳt in R̂2
oos score as the average value of future true values. Note that

ȳt is not just the historical value, but the average value of our future target variables.

Predicted values are stacked outputs from rolling out-of-sample prediction described in

Section 3. Therefore, R2
oos can compare the real-time forecasting performances of various

models. Furthermore, the subperiod R2
oos score is calculated to check the robustness.

R2
oos in the recent 10, 5, 3, 2, and 1-year intervals are measured (R2

oos,t, t ∈ {10, 5, 3, 2, 1},
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respectively). Furthermore, the stationarity of the residual ŷt −yt is guaranteed in most

cases. It makes our model economically meaningful and safe to use performance met-

rics.10 As additional metrics, we practice the Model Confidence Set (MCS) introduced

by Hansen et al. (2011). For each time horizon - weekly, bi-weekly, and monthly - a set

of forecasting models is constructed with a given level of confidence of 0.05. The MCS

shows that the best accurate models are different for each time horizon.

In order to test the statistical significance, the Diebold-Mariano (DM) test is em-

ployed.11 The results indicate that the majority of high-performing models exhibit sta-

tistically significant differences from the benchmark. We employ the stationarity of the

residuals as a proxy for the statistical significance of machine learning models, as these

models are unable to provide statistical significance in the form of F− or p− values.

The majority of the models satisfy the 5% criterion, however, as the periods increase,

the value tends to increase (although in most cases, it remains below 5%).

10We also tested the predictability of residuals ŷt − yt using our models. However, none of the models could
predict the one-step-ahead residual with a positive R2

oos.
11More details about DM test is in Appendix C
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R̂2
oos

Forecasting Model Number of Feature Selection With Uncertainty Without Uncertainty
M 2W W M 2W W

HAR - 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
(0.000E+00) (0.000E+00) (0.000E+00) (0.000E+00) (0.000E+00) (0.000E+00)

TV-HAR - -0.0203 0.2508 0.2392* -0.0203 0.2508 0.2392*
(2.079E-13) (2.648E-19) (1.421E-19) (2.079E-13) (2.648E-19) (1.421E-19)

HAR-X

0 -0.0203 0.2508 0.2392* -0.0203 0.2508 0.2392*
(2.079E-13) (2.648E-19) (1.421E-19) (2.079E-13) (2.648E-19) (1.421E-19)

10 0.0958 0.3445 0.2528* -0.2564 0.2779 0.1377*
(4.276E-11) (8.056E-16) (1.967E-17) (2.145E-07) (1.239E-07) (3.584E-14)

20 0.1260 0.3085 0.2505* 0.0739 0.2377 0.0311
(4.334E-12) (2.286E-15) (5.876E-17) (1.379E-15) (3.635E-17) (4.732E-15)

all 0.3708* 0.4154* 0.3236* 0.0125 0.2106 -1.2143
(4.671E-11) (3.443E-13) (3.356E-12) (6.184E-17) (1.366E-16) (6.322E-06)

LASSO

0 0.0599 0.3018 0.2756* 0.0599 0.3018* 0.2756*
(5.319E-15) (4.384E-20) (1.552E-16) (5.319E-15) (4.384E-20) (1.552E-16)

10 0.1964 0.3622* 0.2766* 0.0452 0.2335 0.2605*
(1.983E-14) (1.719E-19) (1.717E-16) (1.151E-16) (2.426E-15) (2.258E-17)

20 0.2110 0.3623* 0.2766* 0.0550 0.2458 0.2603*
(1.528E-14) (1.723E-19) (1.718E-16) (6.858E-17) (3.340E-15) (2.308E-17)

all 0.4007 0.4512* 0.3547* 0.2554* 0.3980* 0.2439*
(2.232E-17) (8.323E-14) (5.456E-14) (7.102E-17) (5.951E-16) (1.809E-14)

ElasticNet

0 0.0613 0.2985 0.2698* 0.0613 0.2985* 0.2698*
(6.682E-15) (3.345E-20) (1.053E-17) (6.682E-15) (3.345E-20) (1.053E-17)

10 0.2137 0.3849* 0.2969* 0.1537* 0.3245* 0.2714*
(2.232E-14) (4.921E-19) (2.775E-17) (3.724E-15) (3.286E-14) (3.825E-18)

20 0.2237 0.3807* 0.2971* 0.2023* 0.3319* 0.2726*
(2.426E-14) (3.516E-19) (3.317E-17) (1.340E-20) (1.301E-20) (5.200E-18)

all 0.4043* 0.4397* 0.3533* 0.2396* 0.3884* 0.2007*
(3.434E-17) (3.443E-14) (5.409E-14) (6.246E-17) (8.830E-17) (1.019E-13)

DTR

0 0.0513 -0.0220 -0.2066 0.0240 -0.1064 -0.1085
(1.209E-12) (7.737E-08) (1.258E-17) (2.446E-12) (2.973E-08) (7.020E-16)

10 0.3294* 0.3065 -0.2111 0.2264* 0.0022 -0.2102
(4.235E-14) (3.638E-12) (7.734E-15) (7.963E-16) (4.163E-15) (1.461E-19)

20 0.3452* 0.2293 -0.2178 0.2755* -0.0087 0.0697
(2.868E-15) (5.137E-13) (4.559E-18) (3.774E-14) (1.436E-13) (1.118E-12)

all 0.3308* 0.1281 -0.2805 0.0503 0.1752 -0.0473
(1.535E-15) (1.858E-11) (7.418E-19) (5.726E-08) (2.422E-18) (3.920E-13)

RFR

0 0.2827* 0.3737* 0.2297 0.2823* 0.3720* 0.2428*
(1.293E-12) (2.818E-16) (1.783E-17) (1.240E-12) (2.061E-16) (3.330E-17)

10 0.4623* 0.4884* 0.3434* 0.4228* 0.4060* 0.2760*
(3.638E-16) (1.350E-15) (3.149E-16) (1.145E-13) (2.940E-18) (2.131E-15)

20 0.4909* 0.4678* 0.3743* 0.4216* 0.4604* 0.3352*
(1.028E-15) (2.964E-17) (2.684E-17) (1.606E-13) (3.747E-17) (2.574E-16)

all 0.4843* 0.4668* 0.3751* 0.4175* 0.4470* 0.3328*
(3.575E-15) (2.657E-17) (1.246E-17) (8.148E-14) (3.617E-18) (9.301E-17)

GBR

0 0.2160 0.3269 0.2092 0.2296* 0.3205* 0.2233*
(5.184E-13) (3.493E-17) (6.703E-16) (6.920E-13) (2.413E-17) (3.080E-16)

10 0.4292* 0.4891* 0.3221* 0.3102* 0.3305* 0.0601
(1.710E-15) (1.786E-13) (1.266E-15) (1.699E-06) (1.026E-16) (2.916E-19)

20 0.4783* 0.4644* 0.3601* 0.3382* 0.3751* 0.2670*
(2.345E-15) (1.528E-16) (3.625E-16) (2.420E-16) (4.168E-18) (2.752E-19)

all 0.4641* 0.4709* 0.3591* 0.3575* 0.3919* 0.2863*
(1.117E-15) (1.059E-16) (1.366E-16) (3.946E-17) (8.140E-19) (2.269E-17)

ANN

0 -0.0483 0.2008 0.2090 -0.0554 0.2214 0.1738*
(1.238E-13) (8.166E-20) (6.319E-18) (4.572E-14) (1.274E-19) (4.084E-18)

10 0.2757* 0.4146* 0.3610* 0.1210 0.4633* 0.2837*
(9.829E-11) (5.968E-13) (3.832E-13) (4.540E-14) (1.464E-13) (8.791E-13)

20 0.2485 0.3708* 0.2801* 0.2626* 0.5103* 0.0482
(2.381E-12) (2.239E-15) (4.347E-14) (1.589E-13) (1.832E-12) (4.429E-13)

all 0.2923* 0.3285 0.2618* -2.2483 -0.0852 -0.7148
(5.360E-12) (4.946E-16) (1.763E-13) (2.300E-18) (3.332E-14) (1.649E-11)

RNN

0 0.4398* 0.3868* 0.3121* 0.4372* 0.3878* 0.3132*
(5.641E-10) (2.328E-15) (8.896E-15) (6.683E-10) (8.813E-16) (1.264E-14)

10 0.4711* 0.4777* 0.3956* 0.4800* 0.4696* 0.4070*
(1.647E-11) (1.101E-13) (7.267E-14) (5.836E-11) (1.699E-12) (6.483E-15)

20 0.4906* 0.4549* 0.3841* 0.4803* 0.4457* 0.3488*
(4.541E-10) (3.328E-15) (1.998E-15) (3.066E-10) (2.522E-07) (3.794E-14)

all 0.4813* 0.4316* 0.3347* 0.4742* 0.4135* 0.3280*
(6.191E-10) (2.055E-13) (4.252E-15) (8.149E-10) (5.288E-14) (4.572E-15)

Table 2. Forecasting Performance Compared to the Benchmark HAR. R̂2
oos is the performance

measurement compared to the benchmark HAR. For each model and each forecasting horizon, bold numbers
are the best performance measurements with feature selection and data set. For each time horizon, models
that pass the MCS test with a significant level of 0.05 have an asterisk with each performance measure. The
numbers in parentheses indicate the p-values of residual stationarity.
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DM Test

Forecasting Model Number of Feature Selection With Uncertainty Without Uncertainty
M 2W W M 2W W

HAR - 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
(0.000E+00) (0.000E+00) (0.000E+00) (0.000E+00) (0.000E+00) (0.000E+00)

TV-HAR - -0.0453 1.0316 1.3210 -0.0453 1.0316 1.3210
(9.639E-01) (3.023E-01) (1.865E-01) (9.639E-01) (3.023E-01) (1.865E-01)

HAR-X

0 -0.0453 1.0316 1.3210 -0.0453 1.0316 1.3210
(9.639E-01) (3.023E-01) (1.865E-01) (9.639E-01) (3.023E-01) (1.865E-01)

10 0.2264 1.1966 1.2413 -0.4538 0.8356 0.6654
(8.209E-01) (2.315E-01) (2.145E-01) (6.500E-01) (4.034E-01) (5.058E-01)

20 0.2949 1.1187 1.1772 0.1583 0.7380 0.1904
(7.680E-01) (2.633E-01) (2.391E-01) (8.742E-01) (4.605E-01) (8.490E-01)

all 0.7735 1.3406 1.6385 0.0251 0.6020 -2.1993
(4.392E-01) (1.801E-01) (1.013E-01) (9.800E-01) (5.471E-01) (2.786E-02)

LASSO

0 0.1370 1.2562 1.5992 0.1370 1.2562 1.5992
(8.910E-01) (2.091E-01) (1.098E-01) (8.910E-01) (2.091E-01) (1.098E-01)

10 0.4524 1.4092 1.6055 0.0950 0.9466 1.5345
(6.510E-01) (1.588E-01) (1.084E-01) (9.243E-01) (3.439E-01) (1.249E-01)

20 0.4886 1.4095 1.6054 0.1163 1.0021 1.5334
(6.251E-01) (1.587E-01) (1.084E-01) (9.074E-01) (3.163E-01) (1.252E-01)

all 0.8641 1.5312 1.9618 0.5400 1.3853 1.3523
(3.875E-01) (1.257E-01) (4.979E-02) (5.892E-01) (1.659E-01) (1.763E-01)

ElasticNet

0 0.1396 1.2414 1.5810 0.1396 1.2414 1.5810
(8.890E-01) (2.145E-01) (1.139E-01) (8.890E-01) (2.145E-01) (1.139E-01)

10 0.4955 1.4632 1.7104 0.3447 1.2239 1.5775
(6.203E-01) (1.434E-01) (8.719E-02) (7.303E-01) (2.210E-01) (1.147E-01)

20 0.5184 1.4592 1.7080 0.4584 1.2538 1.5816
(6.042E-01) (1.445E-01) (8.764E-02) (6.466E-01) (2.099E-01) (1.137E-01)

all 0.8611 1.5033 1.9617 0.5064 1.3055 1.0979
(3.892E-01) (1.328E-01) (4.980E-02) (6.126E-01) (1.917E-01) (2.723E-01)

DTR

0 0.1157 -0.0534 -0.7162 0.0542 -0.2489 -0.4847
(9.079E-01) (9.574E-01) (4.739E-01) (9.568E-01) (8.034E-01) (6.279E-01)

10 0.6236 0.9530 -0.6466 0.4396 0.0071 -0.5948
(5.329E-01) (3.406E-01) (5.179E-01) (6.602E-01) (9.944E-01) (5.520E-01)

20 0.6709 0.7310 -0.6852 0.5042 -0.0303 0.3664
(5.023E-01) (4.648E-01) (4.932E-01) (6.141E-01) (9.759E-01) (7.141E-01)

all 0.6438 0.3978 -0.8483 0.0800 0.5657 -0.2662
(5.197E-01) (6.908E-01) (3.963E-01) (9.362E-01) (5.716E-01) (7.901E-01)

RFR

0 0.5910 1.2729 1.2499 0.5902 1.2656 1.3154
(5.545E-01) (2.031E-01) (2.113E-01) (5.551E-01) (2.057E-01) (1.884E-01)

10 0.9039 1.6849 1.9719 0.8215 1.5325 1.4702
(3.660E-01) (9.201E-02) (4.862E-02) (4.113E-01) (1.254E-01) (1.415E-01)

20 0.9639 1.6549 2.0061 0.8104 1.6460 1.7020
(3.351E-01) (9.795E-02) (4.484E-02) (4.177E-01) (9.976E-02) (8.875E-02)

all 0.9434 1.6520 2.0083 0.8075 1.6108 1.7388
(3.455E-01) (9.854E-02) (4.461E-02) (4.194E-01) (1.072E-01) (8.207E-02)

GBR

0 0.4689 1.0528 1.1469 0.4946 1.0299 1.2093
(6.391E-01) (2.924E-01) (2.514E-01) (6.209E-01) (3.031E-01) (2.265E-01)

10 0.8215 1.6461 1.8191 0.5836 1.2225 0.2408
(4.114E-01) (9.975E-02) (6.889E-02) (5.595E-01) (2.215E-01) (8.097E-01)

20 0.9446 1.5738 1.8751 0.6352 1.4954 1.4490
(3.449E-01) (1.155E-01) (6.078E-02) (5.253E-01) (1.348E-01) (1.473E-01)

all 0.9041 1.6231 1.9438 0.6768 1.5035 1.5062
(3.659E-01) (1.046E-01) (5.192E-02) (4.986E-01) (1.327E-01) (1.320E-01)

ANN

0 -0.1063 0.8240 1.2178 -0.1211 0.9147 1.0322
(9.153E-01) (4.100E-01) (2.233E-01) (9.036E-01) (3.604E-01) (3.020E-01)

10 0.6114 1.2917 2.1024 0.2777 1.2259 1.8050
(5.409E-01) (1.965E-01) (3.552E-02) (7.813E-01) (2.202E-01) (7.107E-02)

20 0.5951 1.2480 1.3910 0.5359 1.3297 0.2697
(5.518E-01) (2.120E-01) (1.642E-01) (5.920E-01) (1.836E-01) (7.874E-01)

all 0.6462 1.1663 1.3365 -0.9776 -0.2081 -1.1137
(5.182E-01) (2.435E-01) (1.814E-01) (3.283E-01) (8.351E-01) (2.654E-01)

RNN

0 0.8373 1.3570 1.8215 0.8281 1.3550 1.8357
(4.024E-01) (1.748E-01) (6.852E-02) (4.076E-01) (1.754E-01) (6.641E-02)

10 0.9064 1.6585 2.2714 0.9412 1.6314 2.2082
(3.648E-01) (9.721E-02) (2.313E-02) (3.466E-01) (1.028E-01) (2.723E-02)

20 0.9504 1.5747 2.2383 0.9256 1.5598 2.1720
(3.419E-01) (1.153E-01) (2.520E-02) (3.547E-01) (1.188E-01) (2.985E-02)

all 0.9364 1.5226 2.0474 0.9155 1.4484 2.0146
(3.490E-01) (1.279E-01) (4.062E-02) (3.599E-01) (1.475E-01) (4.394E-02)

Table 3. Additional Metrics. The DM contain p- values for whether each model has significantly different
accuracy compared to benchmark HAR. The numbers in parentheses indicate the p-values of residual station-
arity.
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4.2. Empirical Results and Potential Explanation

Overall Performance The out-of-sample test provides evidence that machine learn-

ing models are capable of achieving high levels of accuracy in forecasting oil volatility.

This is evidenced by a notable enhancement in the adjusted R-squared (R2) scores

relative to the benchmark HAR model. The most commonly used time-series models,

such as HAR-X and TV-HAR, demonstrate a less impressive performance than machine

learning models, yet they also exhibit a superior performance compared to the HAR.

The results inhibit that linear or simple machine learning models, including LASSO,

ElasticNet, and DTR, demonstrate inconsistent performance. These models typically

demonstrate superior performance when forecasting past periods, whereas their efficacy

tends to diminish in current periods. Also, the number of feature selection plays an

important role in performance. Nonlinear machine learning models with many small

predictors such as the RFR and GBR can reach an impressive out-of-sample R2 score.

Furthermore, the number of feature selections is a substantial determinant of perfor-

mance. The performance of linear models, including HAR-X, LASSO, and ElasticNet,

is enhanced as the number of selected features increases. Conversely, nonlinear machine

learning models, such as RFR and GBR, demonstrated an exceptional out-of-sample R2

score with 20 features. This suggests that an excess of features may negatively impact

the performance of the models. Deep learning models, including ANN and RNN, yield

varying results. Given the sensitivity of deep learning models to hyperparameters and

their tendency to require more training, the outcomes of deep learning models may be

inconsistent and subject to change over time. However, the performance of RNN is one

of the most notable models in recent times.

As described in section 4.1, we provide a wide range of additional analysis and ro-

bustness checks. The MCS test and the Diebold-Mariano test verifies which models

comparatively outperform the benchmark and other models. We also provide the ro-

bustness checks of the forecast horizon, the number of feature selections, the sub-period

length of performance measurement, and an additional set of uncertainty indices.

The MCS test in Table 2 shows that the best-performing models vary over time

horizons and a set of input data. For the monthly forecast, the random forest and

RNN models work well in the out-of-sample. However, for the weekly forecast, some
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of the models even underperform the TV-HAR, which implies the strong short-term

momentum of the weekly realized volatility.

Table 3 provides additional metrics - the DM test. We present the statistic and p-

values of the DM test with the benchmark model. Although the DM test is another

comparative statistic about forecasting performance, the results can be different from

those of the MCS test. This is because the MCS test is a statistical test for multiple

models, excluding inferior models well, while the DM test is the one-to-one comparison

with the benchmark. Most models from HAR-X to RNN show positive statistics, which

means that the models are better than the benchmark HAR. Interestingly, some models

such as DTR, GBR, and ANN are not differentiated statistically with HAR. One expla-

nation could be lagged variables. The two most important factors in the HAR model

are short-term and long-term lagged variables. In DTR and GBR, the lagged variables

could affect DTR and GBR the most, and therefore, not statistically differentiated from

the HAR model.
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Forecasting Model Number of Feature Selection R2
OOS R2

OOS,10 R2
OOS,5 R2

OOS,3 R2
OOS,2 R2

OOS,1
HAR - -0.8224 -0.8918 -1.0895 -0.1665 -0.1312 -1.0531

(2.273E-03) (4.362E-03) (2.453E-01) (9.286E-01) (1.728E-02) (7.422E-02)
TV-HAR - -0.1154 -0.1759 -0.2851 -0.1238 0.3608 0.1883

(5.893E-21) (4.605E-19) (1.943E-05) (4.493E-01) (2.088E-01) (3.401E-02)
HAR-X 0 -0.8224 -0.8918 -1.0895 -0.1665 -0.1312 -1.0531

(2.273E-03) (4.362E-03) (2.453E-01) (9.286E-01) (1.728E-02) (7.422E-02)
10 -0.1838 -0.2409 -0.3486 -0.9011 -1.0257 -0.2328

(5.802E-05) (2.546E-04) (3.216E-02) (1.565E-02) (3.521E-04) (1.051E-02)
20 0.2034 0.1826 0.1161 -1.4794 -1.6086 -0.8476

(3.729E-07) (1.876E-06) (1.012E-01) (6.567E-04) (3.814E-03) (1.001E-03)
all 0.0591 0.0706 0.0697 -2.0926 -1.7339 -0.4224

(9.227E-08) (7.447E-07) (7.134E-09) (1.938E-01) (2.477E-01) (9.975E-01)
LASSO 0 -0.0256 -0.0788 -0.1795 -0.0518 0.3053 -0.0484

(5.237E-11) (6.249E-10) (4.716E-05) (5.148E-01) (8.338E-01) (7.259E-02)
10 0.1452 0.1024 0.0301 -0.0758 0.3622 0.2709

(2.770E-16) (1.519E-14) (2.777E-02) (1.269E-10) (1.406E-04) (3.048E-02)
20 0.1591 0.1170 0.0353 -0.0854 0.3333 0.2862

(5.892E-16) (3.173E-14) (2.446E-05) (5.776E-09) (1.099E-04) (3.157E-02)
all 0.4333 0.4293 0.3940 -0.4985 -0.1757 0.2427

(2.474E-17) (2.084E-16) (2.004E-09) (2.058E-02) (2.772E-01) (5.396E-01)
ElasticNet 0 -0.0376 -0.0911 -0.1924 -0.0595 0.3015 -0.0452

(1.311E-10) (1.308E-09) (8.332E-05) (5.239E-01) (7.996E-01) (6.511E-02)
10 0.2946 0.2612 0.2136 0.0662 0.4722 0.3081

(1.414E-15) (5.491E-14) (1.169E-05) (1.267E-01) (5.872E-05) (1.638E-02)
20 0.3418 0.3113 0.2602 -0.0608 0.4135 0.4078

(1.298E-13) (2.513E-12) (1.372E-06) (3.984E-02) (4.591E-01) (5.725E-01)
all 0.4092 0.4075 0.3714 -0.5334 -0.2036 0.1589

(1.381E-16) (9.441E-16) (4.328E-03) (1.420E-02) (2.680E-01) (6.463E-01)
DTR 0 -0.2242 -0.2852 -0.3480 -2.5173 -4.5398 -9.0861

(5.670E-19) (2.993E-10) (8.087E-05) (3.350E-06) (9.969E-01) (3.418E-02)
10 0.2721 0.2786 0.3157 0.1458 -0.1037 -0.4031

(4.367E-15) (9.592E-14) (6.653E-04) (6.463E-07) (1.000E+00) (9.925E-01)
20 -0.0420 -0.0536 -0.0797 0.0129 0.0686 0.1317

(1.149E-15) (5.663E-14) (1.362E-09) (2.201E-06) (1.621E-03) (1.744E-01)
all -0.3388 -0.3719 -0.4815 -0.1227 -0.0804 -0.4701

(1.001E-14) (5.967E-18) (1.616E-05) (3.519E-06) (1.485E-01) (9.981E-01)
RFR 0 0.1644 0.1218 0.0765 -0.5679 -0.2707 -1.2435

(6.369E-17) (2.867E-15) (6.978E-04) (6.444E-09) (6.657E-03) (9.910E-01)
10 0.3904 0.3652 0.3311 0.3023 0.5334 0.4312

(2.400E-16) (8.450E-15) (4.116E-02) (3.036E-07) (4.232E-04) (1.389E-01)
20 0.3509 0.3233 0.2802 0.1156 0.4165 0.4939

(6.550E-17) (2.254E-15) (7.894E-02) (5.473E-07) (4.323E-01) (9.963E-01)
all 0.3366 0.3092 0.2620 0.1012 0.4069 0.4465

(4.679E-17) (1.436E-15) (8.484E-02) (1.527E-01) (8.992E-01) (9.864E-01)
GBR 0 0.1262 0.0821 0.0368 -0.5351 -0.3546 -1.1792

(2.970E-17) (1.418E-15) (3.394E-04) (6.945E-08) (3.171E-02) (1.000E+00)
10 0.2712 0.2489 0.2077 0.1331 0.2344 0.2781

(1.077E-14) (2.654E-13) (1.503E-02) (3.247E-01) (8.151E-05) (2.180E-01)
20 0.1082 0.0739 0.0023 -0.4301 -0.6828 0.3736

(1.293E-19) (6.170E-18) (2.454E-02) (2.570E-06) (8.497E-01) (9.956E-01)
all 0.1630 0.1266 0.0598 -0.1553 -0.0990 0.3394

(1.314E-19) (4.881E-18) (1.564E-02) (2.266E-06) (1.317E-08) (5.420E-02)
ANN 0 -0.1792 -0.2224 -0.3356 -0.0549 0.2994 0.1402

(5.113E-12) (4.647E-12) (5.583E-05) (7.479E-01) (5.361E-01) (6.861E-02)
10 0.3931 0.3763 0.3590 -0.1711 0.1225 -0.0981

(4.965E-06) (2.072E-05) (1.444E-06) (2.086E-01) (9.991E-01) (4.872E-01)
20 0.4052 0.3891 0.3680 -0.6005 -0.6262 -0.8552

(2.865E-16) (2.758E-15) (6.164E-06) (7.019E-06) (2.046E-03) (1.657E-01)
all -3.7435 -3.9785 -4.6024 -0.9025 -0.3906 -0.8096

(4.146E-18) (1.864E-16) (3.584E-09) (5.994E-07) (7.837E-02) (1.790E-01)
RNN 0 0.0488 0.0102 -0.0347 -0.0255 0.1527 -0.4145

(5.805E-10) (4.372E-09) (8.138E-04) (7.119E-01) (2.079E-01) (3.593E-01)
10 0.0892 0.0449 -0.0159 0.1064 0.5063 0.2701

(1.141E-10) (1.593E-09) (3.448E-04) (6.350E-08) (6.999E-03) (1.280E-01)
20 0.1032 0.0676 0.0215 0.1578 0.5888 0.6056

(6.659E-10) (7.596E-09) (1.424E-03) (2.054E-01) (5.465E-05) (3.197E-02)
all 0.0663 0.0294 0.0061 0.2718 0.5737 0.5002

(6.894E-10) (2.572E-09) (2.506E-04) (3.152E-07) (2.702E-02) (9.885E-01)
Table 4. Monthly Forecasting Performance. R2

oos scores for entire period and subperiod (t ∈
{10, 5, 3, 2, 1}) are represented. The numbers in parentheses indicate the p-values of residual stationarity. The
bold numbers are the best performance measurements for each subperiod.
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Forecasting Model Number of Feature Selection R2
OOS R2

OOS,10 R2
OOS,5 R2

OOS,3 R2
OOS,2 R2

OOS,1
HAR - -0.4331 -0.5165 -0.6729 0.0788 0.0702 -0.0623

(1.471E-15) (2.663E-12) (2.883E-07) (3.739E-12) (2.547E-03) (2.408E-06)
TV-HAR - 0.1240 0.0891 0.0197 0.2160 0.2571 0.1236

(8.207E-18) (7.085E-14) (1.216E-07) (1.090E-12) (1.267E-12) (6.754E-06)
HAR-X 0 -0.4331 -0.5165 -0.6729 0.0788 0.0702 -0.0623

(1.471E-15) (2.663E-12) (2.883E-07) (3.739E-12) (2.547E-03) (2.408E-06)
10 -0.0442 -0.0670 -0.1590 -0.1486 -0.1498 0.0735

(1.502E-05) (3.839E-10) (2.935E-26) (2.547E-13) (2.798E-13) (1.778E-09)
20 -0.0568 -0.0768 -0.1621 -0.6356 -0.9367 -1.9959

(9.822E-14) (8.450E-11) (1.794E-05) (6.374E-14) (2.520E-12) (2.046E-04)
all -0.4293 -0.1344 -0.2318 -1.1232 -1.8694 -3.6012

(1.761E-13) (1.518E-09) (1.534E-05) (6.778E-13) (6.827E-10) (2.259E-03)
LASSO 0 0.1724 0.1455 0.0814 0.2501 0.2458 0.0157

(3.072E-17) (4.827E-14) (1.725E-08) (1.690E-12) (8.294E-12) (1.583E-05)
10 0.0692 0.0312 -0.0522 0.2273 0.2668 0.0754

(3.391E-17) (6.652E-14) (1.655E-08) (1.077E-10) (1.866E-10) (5.149E-05)
20 0.0871 0.0511 -0.0289 0.1833 0.2666 0.0814

(1.555E-17) (3.371E-14) (1.464E-08) (1.917E-11) (2.988E-12) (3.661E-05)
all 0.0867 0.1744 0.0995 -0.5802 -1.2603 -1.6866

(1.900E-12) (5.250E-10) (1.554E-05) (2.665E-12) (1.210E-11) (9.654E-03)
ElasticNet 0 0.1713 0.1451 0.0810 0.2486 0.2446 0.0197

(2.450E-17) (3.507E-14) (1.360E-08) (1.721E-12) (8.137E-12) (1.713E-05)
10 0.1450 0.1135 0.0423 0.2495 0.2417 0.2120

(5.186E-16) (3.881E-13) (1.020E-07) (1.478E-11) (3.881E-12) (9.338E-07)
20 0.1700 0.1391 0.0715 0.1906 0.2595 0.2136

(1.243E-16) (1.359E-13) (7.929E-08) (2.680E-12) (2.098E-14) (4.261E-07)
all 0.0228 0.1533 0.0768 -0.6958 -1.4011 -2.1249

(6.375E-13) (7.425E-11) (2.863E-06) (2.870E-12) (4.179E-12) (4.316E-02)
DTR 0 -0.4325 -0.4692 -0.5355 -3.7725 -1.4038 -2.4123

(8.693E-16) (2.541E-12) (4.940E-07) (3.658E-15) (7.028E-12) (1.147E-05)
10 -0.2340 -0.2539 -0.3301 -1.8767 -0.7251 -1.3815

(2.188E-17) (1.437E-11) (8.426E-09) (1.045E-14) (1.157E-12) (1.490E-07)
20 -0.0839 -0.0952 -0.1367 -1.9534 -0.2968 -0.7026

(0.000E+00) (2.079E-30) (5.238E-25) (2.002E-12) (2.542E-11) (1.418E-03)
all 0.0647 0.0470 0.0123 -0.3377 -0.5570 -0.0361

(9.164E-16) (7.741E-13) (1.856E-08) (2.446E-19) (6.756E-17) (2.082E-07)
RFR 0 0.2153 0.2149 0.1811 -0.3692 0.0289 0.0245

(5.245E-15) (3.728E-12) (9.815E-07) (2.024E-15) (1.631E-12) (1.216E-01)
10 0.3123 0.3205 0.2754 0.3384 0.0147 -0.0736

(2.016E-16) (9.289E-14) (1.423E-08) (1.029E-11) (3.652E-03) (3.997E-04)
20 0.4017 0.4056 0.3755 0.4038 0.2424 0.0699

(4.199E-15) (4.871E-12) (1.403E-07) (1.540E-12) (4.180E-04) (1.067E-04)
all 0.4059 0.4121 0.3833 0.3914 0.2325 0.1978

(1.036E-16) (3.783E-14) (1.575E-08) (1.180E-12) (2.667E-12) (1.191E-05)
GBR 0 0.1327 0.1364 0.1045 -0.6758 0.0271 -0.1844

(3.405E-15) (3.168E-12) (7.101E-07) (3.688E-16) (1.539E-12) (9.086E-02)
10 0.2331 0.2320 0.1814 0.4332 0.2055 0.1296

(5.805E-17) (3.191E-15) (3.698E-09) (3.902E-10) (4.199E-10) (2.195E-05)
20 0.3058 0.3084 0.2749 0.4065 0.2670 0.1989

(1.199E-15) (2.082E-13) (2.461E-08) (9.598E-11) (1.084E-11) (4.096E-05)
all 0.3687 0.3785 0.3586 0.4026 0.3182 0.2105

(4.186E-18) (8.608E-16) (1.349E-10) (4.284E-10) (2.447E-04) (2.794E-01)
ANN 0 0.0898 0.0667 -0.0034 0.1598 0.0732 -0.0893

(2.762E-17) (5.953E-14) (5.195E-09) (6.739E-14) (7.992E-13) (5.639E-05)
10 0.0432 0.0096 -0.0860 -0.3812 -1.1930 -3.1175

(1.201E-09) (1.558E-08) (2.050E-04) (4.485E-13) (7.545E-13) (8.074E-08)
20 0.1891 0.1766 0.1195 -0.7372 -0.9783 -1.9248

(9.951E-11) (2.494E-30) (8.753E-25) (1.257E-04) (8.250E-09) (1.002E-06)
all -1.8634 -2.0457 -2.4374 -0.8875 -0.9708 -1.9250

(4.023E-30) (9.166E-28) (4.068E-19) (1.316E-11) (3.112E-08) (1.432E-10)
RNN 0 0.2298 0.2127 0.1725 0.1970 0.1550 0.0850

(3.430E-15) (2.047E-12) (8.075E-07) (2.705E-15) (2.888E-13) (7.678E-07)
10 0.3321 0.3359 0.3025 0.4098 0.2218 0.1539

(1.961E-11) (2.146E-09) (3.208E-05) (8.352E-11) (3.023E-11) (3.771E-05)
20 0.2806 0.2667 0.2188 0.2068 0.1776 0.0173

(1.830E-11) (3.291E-09) (2.911E-05) (1.743E-10) (8.148E-13) (2.713E-07)
all 0.2578 0.2373 0.1996 0.4725 0.2964 0.2947

(6.886E-08) (6.112E-06) (2.988E-06) (1.072E-10) (1.575E-02) (9.153E-05)
Table 5. Bi-weekly Forecasting Performance. R2

oos scores for entire period and subperiod (t ∈
{10, 5, 3, 2, 1}) are represented. The numbers in parentheses indicate the p-values of residual stationarity. The
bold numbers are the best performance measurements for each subperiod.
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Forecasting Model Number of Feature Selection R2
OOS R2

OOS,10 R2
OOS,5 R2

OOS,3 R2
OOS,2 R2

OOS,1
HAR - -0.0714 -0.1217 -0.2127 -0.0059 0.0323 -0.1408

(6.045E-17) (9.597E-13) (2.885E-07) (6.728E-18) (7.068E-17) (5.059E-09)
TV-HAR - 0.3117 0.2990 0.2749 0.1455 0.1225 0.0129

(2.151E-19) (6.913E-15) (8.617E-09) (6.334E-27) (8.163E-11) (1.361E-14)
HAR-X 0 -0.0714 -0.1217 -0.2127 -0.0059 0.0323 -0.1408

(6.045E-17) (9.597E-13) (2.885E-07) (6.728E-18) (7.068E-17) (5.059E-09)
10 0.2495 0.2571 0.2279 -0.2038 -0.3675 -0.5944

(1.013E-12) (3.066E-10) (2.523E-05) (2.234E-24) (1.808E-21) (7.910E-16)
20 0.2082 0.2708 0.2487 -0.4295 -0.7749 -1.7198

(1.646E-14) (1.611E-11) (6.935E-06) (6.239E-24) (1.835E-20) (3.046E-12)
all -1.1823 0.2932 0.2632 -0.4458 -0.9169 -1.8841

(4.979E-04) (1.317E-09) (2.614E-19) (2.301E-22) (3.547E-17) (1.661E-08)
LASSO 0 0.3367 0.3321 0.3114 0.1872 0.1673 0.0231

(1.174E-14) (1.205E-11) (8.683E-07) (1.618E-26) (2.353E-22) (1.272E-14)
10 0.3296 0.3239 0.3016 0.1889 0.1700 0.0260

(6.190E-16) (1.045E-12) (1.621E-07) (2.387E-26) (3.201E-22) (1.472E-14)
20 0.3299 0.3239 0.3016 0.1889 0.1700 0.0260

(6.322E-16) (1.045E-12) (1.621E-07) (2.387E-26) (3.201E-22) (1.472E-14)
all 0.2928 0.3658 0.3338 -0.1595 -0.4780 -0.7846

(2.227E-13) (1.310E-10) (3.810E-06) (3.262E-21) (7.187E-17) (3.602E-10)
ElasticNet 0 0.3398 0.3332 0.3124 0.1852 0.1645 0.0248

(1.618E-16) (5.191E-13) (1.502E-07) (1.320E-26) (1.758E-22) (1.237E-14)
10 0.3577 0.3509 0.3335 0.2113 0.1847 0.0572

(1.943E-17) (1.161E-13) (4.603E-08) (3.535E-26) (2.769E-22) (1.350E-14)
20 0.3584 0.3521 0.3350 0.1975 0.1786 0.0735

(2.920E-17) (1.258E-13) (4.836E-08) (2.361E-26) (5.986E-23) (4.284E-15)
all 0.2568 0.3645 0.3332 -0.2146 -0.5612 -1.0275

(2.294E-12) (4.002E-10) (7.815E-06) (5.368E-22) (1.015E-17) (4.570E-10)
DTR 0 -0.2206 -0.1725 -0.1309 -1.8657 -1.4720 -2.3459

(2.153E-16) (1.191E-11) (7.171E-06) (3.911E-22) (9.982E-19) (5.843E-09)
10 -0.2822 -0.2305 -0.2959 -5.9182 -13.7236 -41.8268

(1.195E-19) (1.764E-15) (1.667E-08) (1.224E-25) (1.383E-20) (2.284E-12)
20 -0.0511 0.0016 -0.0174 -0.9437 -2.4880 -5.3090

(7.846E-20) (2.562E-08) (1.872E-18) (2.031E-25) (1.856E-20) (1.641E-11)
all -0.1687 -0.1334 -0.1704 -1.9978 -4.7846 -12.5673

(5.427E-14) (1.110E-10) (2.366E-07) (2.579E-26) (1.276E-20) (1.110E-12)
RFR 0 0.2462 0.2516 0.2453 0.0239 0.0903 -0.0627

(1.157E-15) (3.219E-12) (3.336E-06) (6.389E-25) (6.060E-10) (4.391E-09)
10 0.3319 0.3463 0.3125 -0.6355 -2.0051 -6.5592

(2.497E-14) (1.239E-15) (2.334E-08) (5.984E-25) (9.341E-20) (2.090E-12)
20 0.3900 0.4037 0.3846 -0.3368 -1.3978 -5.0238

(1.917E-15) (4.770E-12) (1.325E-06) (4.639E-27) (1.119E-14) (9.976E-09)
all 0.3877 0.3990 0.3768 -0.2965 -1.2702 -4.4404

(4.186E-16) (9.884E-13) (2.392E-07) (1.884E-26) (1.573E-14) (1.375E-13)
GBR 0 0.2203 0.2309 0.2075 -0.1693 0.1164 0.0024

(2.421E-14) (3.937E-11) (3.826E-07) (7.883E-15) (8.966E-22) (6.636E-12)
10 0.1269 0.1225 0.0629 -2.1277 -5.3814 -17.8760

(2.634E-20) (5.655E-16) (1.191E-08) (5.354E-25) (5.946E-20) (8.667E-12)
20 0.3544 0.3729 0.3600 -0.3647 -1.4314 -5.0739

(1.580E-18) (2.536E-14) (1.228E-22) (1.521E-26) (8.279E-15) (2.670E-13)
all 0.3614 0.3745 0.3611 -0.4204 -1.4232 -4.9260

(6.777E-16) (2.961E-12) (1.637E-11) (9.155E-26) (1.170E-14) (2.181E-13)
ANN 0 0.2772 0.2693 0.2415 0.1924 0.1193 0.0177

(1.110E-16) (2.283E-14) (1.089E-08) (2.328E-25) (1.425E-19) (2.016E-10)
10 0.3867 0.3861 0.3719 -0.0020 -0.3044 -1.2751

(9.693E-23) (2.699E-19) (1.481E-11) (1.479E-22) (1.383E-13) (1.518E-11)
20 0.2431 0.2492 0.2340 -0.4173 -0.9081 -1.8306

(7.053E-21) (1.389E-16) (5.689E-13) (3.548E-04) (6.624E-13) (1.869E-11)
all -0.4727 -0.5301 -0.6294 -1.0350 -2.1418 -5.1300

(2.819E-15) (5.803E-28) (5.788E-20) (8.204E-22) (2.608E-13) (3.830E-11)
RNN 0 0.3254 0.3200 0.3020 0.1655 0.0944 0.0168

(8.035E-14) (1.731E-10) (8.619E-06) (1.473E-24) (8.473E-20) (2.083E-11)
10 0.4191 0.4254 0.4150 0.3174 0.0222 -0.3291

(2.713E-14) (2.070E-11) (1.021E-06) (2.404E-25) (1.345E-18) (8.663E-12)
20 0.3584 0.3606 0.3450 0.3407 0.1835 -0.0238

(5.590E-14) (5.548E-11) (1.817E-05) (1.316E-23) (3.676E-18) (1.233E-12)
all 0.3210 0.3265 0.2966 0.3722 0.1942 -0.0373

(2.498E-15) (8.128E-13) (2.166E-07) (4.872E-25) (2.693E-18) (2.482E-10)
Table 6. Weekly Forecasting Performance. R2

oos scores for entire period and subperiod (t ∈
{10, 5, 3, 2, 1}) are represented. The numbers in parentheses indicate the p-values of residual stationarity. The
bold numbers are the best performance measurements for each subperiod.
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Forecasting Horizon The longer the forecast horizon, the better the performances

of most models tend to be (Table 4, 5, 6). This might be simply from the noise of the

data, as data with shorter frequencies contain a smaller set of data for each realized

volatility. However, on the contrary, the performance of the benchmark model decreases

as the forecast horizon increases. Since the HAR model works well enough with the

different horizons, it cannot be said that this is because memory is lost as the time

horizon lengthens. Rather, it can be interpreted that the short-term variable and long-

term variables of the HAR model do not sufficiently reflect the momentum of the realized

volatility. We can see that the RFR and RNN models tend to make robust predictions

over the forecast horizon compared to other models, and the results themselves are

superior to others.

In addition to the forecast horizon, robustness to the sub-period length also has

important implications. While it is very important to get it right over the entire time, it

is also very important to get it right over the recent period. LASSO and ElasticNet show

great performance for longer sub-periods, while RFR and RNN show better performance

for recent times. The RFR and RNN show a very stable R2 score even during the

period of COVID-19. This is particularly meaningful because not only the result is

statistically significant (the residual is stationary) but they are robust to the test period.

Interestingly, the results for LASSO and ElasticNet using recent time periods are a

bit unusual. While the performance of the models themselves decreases as the forecast

horizon decreases, the ranking of LASSO and ElaticNet actually increases. This suggests

that oil prices have been very volatile in recent periods, and the momentum played much

important role than other features.
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Forecasting Model Number of Feature Selection R2
OOS R2

OOS,10 R2
OOS,5 R2

OOS,3 R2
OOS,2 R2

OOS,1
HAR - -0.8224 -0.8918 -1.0895 -0.1665 -0.1312 -1.0531

(2.273E-03) (4.362E-03) (2.453E-01) (9.286E-01) (1.728E-02) (7.422E-02)
TV-HAR - -0.1154 -0.1759 -0.2851 -0.1238 0.3608 0.1883

(5.893E-21) (4.605E-19) (1.943E-05) (4.493E-01) (2.088E-01) (3.401E-02)
HAR-X 0 -0.8224 -0.8918 -1.0895 -0.1665 -0.1312 -1.0531

(2.273E-03) (4.362E-03) (2.453E-01) (9.286E-01) (1.728E-02) (7.422E-02)
10 0.1144 0.0777 0.0183 -0.9011 -1.0257 -0.2328

(3.581E-17) (1.620E-15) (1.738E-08) (1.565E-02) (3.521E-04) (1.051E-02)
20 0.0387 0.0034 -0.0793 -1.3337 -2.2149 -0.3676

(1.409E-20) (1.080E-18) (1.168E-10) (4.948E-01) (4.345E-06) (4.611E-04)
all 0.4685 0.4636 0.4581 -1.1800 -1.6785 -0.4692

(3.248E-07) (1.159E-13) (1.734E-04) (2.572E-02) (2.566E-01) (1.000E+00)
LASSO 0 -0.0256 -0.0788 -0.1795 -0.0518 0.3053 -0.0484

(5.237E-11) (6.249E-10) (4.716E-05) (5.148E-01) (8.338E-01) (7.259E-02)
10 0.2071 0.1678 0.1058 -0.0758 0.3622 0.2709

(9.274E-13) (2.343E-11) (7.440E-02) (1.269E-10) (1.406E-04) (3.048E-02)
20 0.2215 0.1830 0.1116 -0.0758 0.3622 0.2709

(5.528E-13) (1.470E-11) (4.797E-02) (1.269E-10) (1.406E-04) (3.048E-02)
all 0.5602 0.5474 0.5216 -0.5571 -0.2091 0.0758

(1.104E-17) (1.177E-15) (2.227E-08) (9.731E-02) (5.403E-05) (7.254E-02)
ElasticNet 0 -0.0376 -0.0911 -0.1924 -0.0595 0.3015 -0.0452

(1.311E-10) (1.308E-09) (8.332E-05) (5.239E-01) (7.996E-01) (6.511E-02)
10 0.2301 0.1929 0.1344 0.0662 0.4722 0.3081

(1.160E-12) (1.685E-11) (4.118E-02) (1.267E-01) (5.872E-05) (1.638E-02)
20 0.2119 0.1740 0.1011 0.0111 0.4727 0.3075

(8.128E-13) (1.224E-11) (4.506E-02) (1.356E-01) (5.603E-05) (1.653E-02)
all 0.5581 0.5463 0.5212 -0.5747 -0.2567 0.0769

(2.712E-17) (2.577E-15) (3.835E-08) (8.831E-02) (8.186E-05) (8.503E-02)
DTR 0 -0.1846 -0.2439 -0.3223 -2.5200 -4.5855 -9.4199

(7.083E-12) (1.508E-10) (1.143E-05) (6.053E-06) (9.410E-01) (4.531E-02)
10 0.0772 0.0730 0.0865 0.2048 0.0403 -0.1204

(1.938E-13) (7.730E-12) (9.661E-02) (1.514E-06) (1.000E+00) (3.485E-02)
20 0.0855 0.0826 0.0670 0.0598 0.2555 -0.2466

(1.015E-13) (3.509E-12) (1.018E-01) (2.612E-09) (5.921E-01) (9.447E-01)
all -0.0329 -0.0420 -0.0856 -0.0870 0.1783 -0.2413

(4.458E-13) (1.372E-11) (1.110E-01) (1.333E-12) (2.495E-06) (9.927E-01)
RFR 0 0.1619 0.1191 0.0741 -0.5734 -0.2769 -1.2444

(7.406E-17) (3.315E-15) (7.310E-04) (8.765E-09) (8.249E-03) (9.927E-01)
10 0.3996 0.3747 0.3445 0.2765 0.5252 0.4003

(8.176E-13) (1.728E-11) (9.641E-05) (5.663E-07) (4.202E-04) (1.305E-01)
20 0.3890 0.3628 0.3281 0.2058 0.4313 0.4681

(2.925E-13) (5.877E-12) (7.337E-05) (1.140E-07) (1.715E-04) (1.893E-01)
all 0.3900 0.3633 0.3263 0.2798 0.4507 0.4183

(3.774E-13) (7.489E-12) (1.052E-04) (2.022E-01) (7.107E-01) (2.762E-01)
GBR 0 0.1129 0.0680 0.0209 -0.5325 -0.3486 -1.1792

(1.800E-17) (8.916E-16) (2.536E-04) (8.862E-08) (4.154E-02) (1.000E+00)
10 0.3156 0.2944 0.2640 0.1661 0.2838 0.2808

(6.920E-13) (1.740E-11) (6.580E-05) (3.576E-01) (1.597E-04) (2.158E-01)
20 0.3279 0.3078 0.2804 -0.6926 -1.2274 0.3230

(1.122E-11) (1.901E-10) (2.462E-05) (7.473E-08) (2.856E-09) (9.529E-02)
all 0.3690 0.3447 0.3150 -0.4082 -0.3846 0.3471

(2.175E-12) (4.404E-11) (9.949E-06) (1.114E-07) (2.762E-07) (1.276E-01)
ANN 0 -0.1702 -0.2119 -0.3231 -0.0139 0.2969 0.0773

(7.448E-12) (1.009E-11) (8.182E-05) (6.271E-01) (7.602E-01) (1.347E-01)
10 0.4105 0.3971 0.3884 -0.1129 0.1507 -0.1438

(6.680E-14) (4.604E-13) (5.001E-05) (2.673E-01) (1.000E+00) (6.024E-01)
20 0.3738 0.3486 0.3458 -0.1116 -0.2108 -0.6445

(1.097E-16) (1.992E-15) (1.470E-16) (2.468E-07) (7.774E-01) (6.415E-01)
all 0.3484 0.3289 0.3275 -0.7419 -0.9420 -2.6058

(5.600E-21) (1.795E-19) (6.915E-04) (2.500E-07) (4.844E-01) (7.730E-01)
RNN 0 0.0469 0.0066 -0.0369 -0.0439 0.1248 -0.4881

(3.390E-10) (2.627E-09) (7.359E-04) (6.892E-01) (4.299E-01) (3.271E-01)
10 0.1347 0.0939 0.0426 0.1647 0.4339 0.2462

(4.888E-10) (6.055E-09) (7.142E-04) (3.782E-08) (1.713E-02) (1.278E-01)
20 0.1524 0.1202 0.0652 0.0964 0.1485 -0.0698

(1.322E-10) (1.146E-09) (1.569E-03) (2.063E-01) (1.321E-02) (9.962E-01)
all 0.0755 0.0408 0.0187 0.2765 0.5025 0.4409

(7.702E-10) (2.657E-09) (2.060E-04) (2.970E-07) (1.557E-02) (9.990E-01)
Table 7. Monthly Forecasting Performance with Uncertainty Indices. R2

oos scores for entire period
and subperiod (t ∈ {10, 5, 3, 2, 1}) are represented. The numbers in parentheses indicate the p-values of residual
stationarity. The bold numbers are the best performance measurements for each subperiod.
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Forecasting Model Number of Feature Selection R2
OOS R2

OOS,10 R2
OOS,5 R2

OOS,3 R2
OOS,2 R2

OOS,1
HAR - -0.4331 -0.5165 -0.6729 0.0788 0.0702 -0.0623

(1.471E-15) (2.663E-12) (2.883E-07) (3.739E-12) (2.547E-03) (2.408E-06)
TV-HAR - 0.1240 0.0891 0.0197 0.2160 0.2571 0.1236

(8.207E-18) (7.085E-14) (1.216E-07) (1.090E-12) (1.267E-12) (6.754E-06)
HAR-X 0 -0.4331 -0.5165 -0.6729 0.0788 0.0702 -0.0623

(1.471E-15) (2.663E-12) (2.883E-07) (3.739E-12) (2.547E-03) (2.408E-06)
10 0.2601 0.2612 0.2202 -0.2401 -0.0644 -0.1814

(4.170E-14) (9.497E-12) (2.150E-06) (3.988E-13) (4.247E-13) (5.232E-01)
20 0.2335 0.2304 0.1916 -0.5422 -0.1445 0.0414

(1.692E-13) (4.809E-11) (3.602E-06) (1.840E-12) (7.702E-13) (3.656E-07)
all 0.2516 0.2458 0.1988 -0.7750 -0.9573 -0.5857

(7.572E-10) (4.139E-08) (6.211E-05) (1.112E-11) (3.391E-09) (5.791E-04)
LASSO 0 0.1724 0.1455 0.0814 0.2501 0.2458 0.0157

(3.072E-17) (4.827E-14) (1.725E-08) (1.690E-12) (8.294E-12) (1.583E-05)
10 0.2412 0.2188 0.1670 0.1928 0.2668 0.0814

(4.763E-17) (4.405E-14) (2.112E-08) (1.998E-11) (3.151E-12) (3.661E-05)
20 0.2409 0.2188 0.1670 0.1928 0.2668 0.0814

(4.693E-17) (4.405E-14) (2.112E-08) (1.998E-11) (3.151E-12) (3.661E-05)
all 0.3177 0.3053 0.2517 0.1807 -0.0947 0.0516

(3.398E-12) (1.112E-09) (2.688E-05) (2.919E-14) (3.681E-12) (7.178E-05)
ElasticNet 0 0.1713 0.1451 0.0810 0.2486 0.2446 0.0197

(2.450E-17) (3.507E-14) (1.360E-08) (1.721E-12) (8.137E-12) (1.713E-05)
10 0.2844 0.2651 0.2191 0.2263 0.2989 0.2097

(1.273E-16) (3.364E-14) (2.301E-08) (1.449E-11) (5.154E-13) (2.380E-05)
20 0.2814 0.2602 0.2126 0.2216 0.2985 0.2097

(7.886E-17) (3.258E-14) (2.291E-08) (1.387E-11) (5.136E-13) (2.380E-05)
all 0.3094 0.2958 0.2429 0.0689 -0.2175 -0.0307

(1.226E-12) (5.212E-10) (1.578E-05) (1.446E-13) (2.824E-11) (1.611E-04)
DTR 0 -0.4030 -0.4207 -0.4609 -1.0836 -1.4369 -2.4828

(2.277E-15) (7.154E-12) (1.433E-07) (3.983E-14) (3.434E-12) (9.017E-06)
10 -0.0261 -0.0170 -0.0362 -1.8843 -0.7706 -1.0411

(4.796E-17) (5.623E-13) (7.743E-07) (1.928E-16) (9.395E-17) (6.755E-03)
20 0.1224 0.1261 0.1072 -1.8057 -0.4107 -0.7176

(3.113E-11) (4.435E-09) (3.469E-05) (5.907E-15) (1.873E-12) (9.336E-05)
all 0.0022 -0.0103 -0.0634 -0.0145 -0.1713 -0.0195

(7.695E-11) (4.156E-08) (1.761E-04) (1.140E-07) (4.450E-16) (1.961E-09)
RFR 0 0.2228 0.2229 0.1903 -0.3520 0.0430 0.0110

(8.574E-15) (5.530E-12) (1.257E-06) (1.421E-15) (1.502E-12) (1.322E-01)
10 0.4157 0.4263 0.3989 0.4385 0.2313 0.0671

(5.086E-13) (1.075E-10) (2.047E-06) (1.168E-12) (1.199E-08) (3.233E-05)
20 0.4332 0.4365 0.4103 0.4379 0.2529 0.1195

(3.607E-15) (1.372E-12) (1.168E-07) (3.055E-12) (3.044E-12) (8.426E-06)
all 0.4220 0.4262 0.3991 0.4003 0.2742 0.2264

(9.403E-16) (3.742E-13) (6.208E-08) (1.501E-12) (2.426E-12) (9.950E-06)
GBR 0 0.1325 0.1324 0.0997 -0.6054 0.0271 -0.1844

(4.129E-15) (3.481E-12) (6.767E-07) (1.188E-15) (1.539E-12) (9.086E-02)
10 0.4224 0.4355 0.4149 0.4191 0.3391 0.1340

(4.113E-12) (2.471E-10) (2.917E-06) (3.185E-10) (3.119E-12) (2.318E-05)
20 0.4382 0.4516 0.4395 0.3489 0.2681 0.1326

(1.572E-14) (2.465E-12) (8.803E-08) (4.628E-08) (1.491E-10) (3.073E-06)
all 0.4275 0.4409 0.4327 0.4118 0.2815 0.2174

(4.274E-15) (4.644E-13) (2.171E-08) (3.122E-11) (2.002E-11) (2.143E-05)
ANN 0 0.0682 0.0427 -0.0317 0.1667 0.0431 -0.1548

(1.534E-17) (4.212E-14) (4.223E-09) (7.337E-14) (4.340E-13) (1.125E-05)
10 0.2614 0.2473 0.1919 0.1750 0.1655 -0.0554

(2.180E-10) (1.381E-09) (1.600E-05) (8.319E-09) (8.225E-11) (1.199E-03)
20 0.3023 0.2989 0.2736 0.0370 -0.1053 -0.1325

(2.594E-12) (1.920E-11) (2.379E-06) (6.188E-12) (7.267E-11) (9.531E-06)
all 0.2774 0.2871 0.2747 -0.3376 -0.4558 -0.3589

(7.206E-14) (2.639E-12) (1.778E-07) (2.387E-10) (1.255E-03) (1.872E-01)
RNN 0 0.2079 0.1921 0.1485 0.1730 0.0915 -0.0419

(1.431E-14) (8.350E-12) (1.880E-06) (6.609E-14) (1.368E-12) (2.223E-06)
10 0.3486 0.3379 0.3027 0.4052 0.3539 0.1496

(4.026E-13) (1.103E-10) (2.899E-06) (9.886E-09) (4.915E-11) (3.805E-03)
20 0.3111 0.3055 0.2787 0.3561 0.2412 0.2320

(7.085E-14) (1.848E-11) (8.996E-07) (1.002E-07) (1.206E-01) (1.697E-04)
all 0.2516 0.2280 0.1828 0.4650 0.2926 0.2460

(3.833E-13) (8.594E-11) (2.698E-06) (3.253E-09) (2.174E-03) (2.352E-04)
Table 8. Bi-weekly Forecasting Performance with Uncertainty Indices. R2

oos scores for entire period
and subperiod (t ∈ {10, 5, 3, 2, 1}) are represented. The numbers in parentheses indicate the p-values of residual
stationarity. The bold numbers are the best performance measurements for each subperiod.
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Forecasting Model Number of Feature Selection R2
OOS R2

OOS,10 R2
OOS,5 R2

OOS,3 R2
OOS,2 R2

OOS,1
HAR - -0.0714 -0.1217 -0.2127 -0.0059 0.0323 -0.1408

(6.045E-17) (9.597E-13) (2.885E-07) (6.728E-18) (7.068E-17) (5.059E-09)
TV-HAR - 0.3117 0.2990 0.2749 0.1455 0.1225 0.0129

(2.151E-19) (6.913E-15) (8.617E-09) (6.334E-27) (8.163E-11) (1.361E-14)
HAR-X 0 -0.0714 -0.1217 -0.2127 -0.0059 0.0323 -0.1408

(6.045E-17) (9.597E-13) (2.885E-07) (6.728E-18) (7.068E-17) (5.059E-09)
10 0.3059 0.3186 0.2995 -0.0861 0.0106 -0.1231

(1.592E-16) (5.208E-14) (4.284E-08) (1.004E-23) (2.169E-20) (1.450E-12)
20 0.2824 0.3074 0.2823 -0.2541 -0.0957 0.0305

(7.778E-16) (4.292E-13) (1.648E-07) (8.955E-25) (7.375E-22) (7.469E-14)
all 0.3474 0.3852 0.3628 -0.2546 -0.2978 -0.2114

(4.481E-11) (4.360E-08) (8.877E-05) (4.451E-23) (2.499E-17) (7.067E-12)
LASSO 0 0.3367 0.3321 0.3114 0.1872 0.1673 0.0231

(1.174E-14) (1.205E-11) (8.683E-07) (1.618E-26) (2.353E-22) (1.272E-14)
10 0.3376 0.3331 0.3126 0.1889 0.1700 0.0260

(1.282E-14) (1.221E-11) (8.546E-07) (2.387E-26) (3.201E-22) (1.472E-14)
20 0.3376 0.3331 0.3126 0.1889 0.1700 0.0260

(1.283E-14) (1.221E-11) (8.546E-07) (2.387E-26) (3.201E-22) (1.472E-14)
all 0.3848 0.3969 0.3705 0.1992 0.0852 0.0585

(9.367E-14) (7.932E-11) (3.422E-06) (7.732E-25) (2.885E-05) (9.827E-14)
ElasticNet 0 0.3398 0.3332 0.3124 0.1852 0.1645 0.0248

(1.618E-16) (5.191E-13) (1.502E-07) (1.320E-26) (1.758E-22) (1.237E-14)
10 0.3588 0.3524 0.3353 0.2128 0.2001 0.0822

(7.259E-16) (1.281E-12) (1.967E-07) (4.884E-26) (5.583E-22) (3.547E-14)
20 0.3575 0.3513 0.3340 0.1981 0.1948 0.0977

(6.743E-16) (1.131E-12) (1.810E-07) (3.484E-26) (1.171E-22) (1.123E-14)
all 0.3878 0.3984 0.3735 0.1769 0.0863 0.0564

(9.756E-14) (1.049E-10) (3.877E-06) (3.044E-25) (1.489E-05) (3.906E-14)
DTR 0 -0.2966 -0.2424 -0.2173 -0.7698 -1.2630 -1.5798

(2.571E-18) (9.006E-14) (7.943E-08) (1.270E-21) (1.293E-10) (1.565E-10)
10 -0.2386 -0.2220 -0.2806 -0.1886 -0.7208 -1.1564

(4.435E-18) (1.048E-13) (8.784E-08) (6.482E-25) (8.301E-17) (5.378E-12)
20 -0.2525 -0.2309 -0.2726 -0.3411 -0.4462 -0.7275

(2.395E-12) (6.108E-09) (1.036E-04) (3.523E-29) (1.706E-10) (1.472E-12)
all -0.3255 -0.3111 -0.3645 -0.5204 -0.7524 -0.9286

(4.783E-14) (1.652E-08) (2.058E-08) (1.362E-29) (1.248E-03) (3.870E-08)
RFR 0 0.2455 0.2510 0.2449 0.0316 0.0896 -0.0775

(4.173E-16) (1.282E-12) (2.246E-07) (5.965E-25) (4.826E-10) (5.790E-09)
10 0.4214 0.4407 0.4274 0.3240 0.1997 0.0566

(2.654E-15) (1.983E-12) (1.080E-07) (4.968E-24) (1.325E-18) (1.695E-10)
20 0.4227 0.4376 0.4243 0.3481 0.1747 0.1215

(1.143E-16) (2.685E-13) (4.200E-08) (7.566E-26) (1.782E-05) (1.674E-12)
all 0.4206 0.4353 0.4196 0.3022 0.1179 0.0993

(6.574E-17) (1.226E-13) (1.633E-08) (5.679E-26) (2.372E-05) (1.249E-12)
GBR 0 0.2001 0.2083 0.1802 -0.1197 0.1183 0.0202

(2.660E-14) (1.094E-12) (1.146E-06) (1.383E-14) (1.108E-21) (1.710E-11)
10 0.3083 0.3169 0.2931 0.2776 0.1671 0.0378

(1.613E-16) (2.175E-11) (1.079E-06) (8.415E-24) (8.784E-20) (1.140E-09)
20 0.3561 0.3694 0.3557 0.2418 0.1512 0.0228

(1.443E-16) (6.048E-12) (8.274E-07) (2.766E-23) (3.112E-05) (1.756E-11)
all 0.3497 0.3606 0.3395 0.2606 0.1617 0.0634

(1.997E-15) (3.194E-12) (5.048E-07) (2.245E-23) (2.052E-05) (4.427E-12)
ANN 0 0.2995 0.2950 0.2730 0.2002 0.1233 0.0065

(2.356E-16) (2.791E-14) (1.293E-08) (1.167E-25) (4.722E-20) (2.788E-11)
10 0.3883 0.3957 0.3864 0.2196 0.1475 -0.1258

(2.275E-15) (4.064E-12) (1.313E-06) (6.690E-18) (1.359E-16) (2.137E-08)
20 0.2902 0.2980 0.2911 -0.1979 -0.2956 -1.0640

(1.299E-16) (2.206E-13) (3.362E-07) (9.375E-23) (4.379E-21) (2.091E-12)
all 0.2713 0.2888 0.3015 -0.1994 -0.6120 -1.4317

(1.271E-15) (3.977E-12) (1.706E-06) (1.129E-21) (1.359E-03) (3.721E-09)
RNN 0 0.3247 0.3203 0.3034 0.2132 0.1238 0.0993

(6.578E-14) (1.723E-10) (8.985E-06) (1.041E-24) (5.747E-21) (1.853E-11)
10 0.4174 0.4222 0.4135 0.3297 0.1765 0.0408

(3.292E-13) (2.262E-10) (4.210E-06) (1.956E-23) (4.850E-19) (5.604E-09)
20 0.3895 0.4044 0.3974 0.2838 0.0861 -0.1597

(3.013E-15) (2.065E-12) (1.171E-07) (1.568E-24) (1.835E-14) (5.615E-10)
all 0.3473 0.3540 0.3236 0.4095 0.2544 -0.0095

(5.470E-15) (1.796E-12) (4.216E-07) (1.039E-23) (1.597E-19) (4.046E-11)
Table 9. Weekly Forecasting Performance with Uncertainty Indices. R2

oos scores for entire period
and subperiod (t ∈ {10, 5, 3, 2, 1}) are represented. The numbers in parentheses indicate the p-values of residual
stationarity. The bold numbers are the best performance measurements for each subperiod.
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Uncertainty Indices Furthermore, we find that the use of uncertainty indices can

push the accuracy of models even higher (Table 7, 8, and 9). The results vary slightly by

model, with ElasticNet, DTR, and RNN seeing performance improvements by adding

uncertainty features in about half of the cases, while LASSO, RFR, and ANN improve

in most cases.

There are also significant differences based on the forecasting horizon. For most mod-

els, the shorter the forecast horizon, the better the use of uncertainty indices. This can

be explained by the fact that the uncertainty indices reduce overfitting and are more

influential in dealing with noise in short-term forecasts.

In many cases, adding uncertainty data to the training data set is beneficial. However,

we could not guarantee that all uncertainty data has high explanatory power because

many of them are likely to be pruned during the feature selection process. Even so, the

highest performer of each model shows a higher performance when uncertainty indices

join the training data set.

Feature Selection

Figure 2. Feature Usage Count The feature usage was aggregated for the best performance models for
each time horizon that selected 10 or 20 features, excluding cases where the entire set of features was selected.
Each feature is assigned a number in Table 1 based on the first letter of each factor group (P, S, D, F, U, V)
and in order from top to bottom (except for WTI future price, which is used as a dependent variable), e.g.,
WTI Spot price is equal to P2, PPI in US is equal to D4, etc.

We examine the feature usage in the models. First, we defined the best performance

model as the feature selection methodology that performed the best in each model for
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each time horizon being predicted. Then, we counted and summarized the usage of the

features utilized by each best model when predicting each time point. Also, in order to

clearly see the difference in the number of features selected, we excluded all cases where

all features were selected and only kept cases where 10 or 20 features were selected. The

result is presented in Figure 2. Each feature is assigned a number in Table 1 based on

the first letter of each factor group (P, S, D, F, U, V) and in order from top to bottom

(except for WTI future price, which is used as a dependent variable). For example, WTI

Spot price is equal to P2, PPI in US is equal to D4.

Looking at the Figure 2, we can see that several features are highly selected, both

with and without uncertainty features. First of all, the volatility indices(V1 to 4)

are all highly selected, with PPI in China, US, and EU(D3 to 5) and federal funds

rate and MSCI World Standard Index(F6,7) being the most selected. Next, WTI spot

prices and NGL spot prices(P1,4) and capacity utilization rate(S5) are being selected.

For the uncertainty features, US economic policy uncertainty in financial regulation,

monetary policy, national security, and economic policy uncertainty(U13,5,10,4) are

mostly selected. As in Degiannakis and Filis (2022) and Delis et al. (2023), the implied

volatility indices are important in forecasting the volatility. Also, as the oil is one of the

most important commodity in production, the PPI plays significant role. Federal funds

rate and MSCI World Index represents the global economy, which is important for the

volatility.

On the other hand, total OPEC production capacity(S4) and Brent oil spot

prices(P2), US/UK, China/UK foreign exchange rate(F4,5) failed to being selected.

Also, Global economic policy uncertainty, US economic policy uncertainty in fis-

cal policy, government spending, regulation, trade policy, and World uncertainty in-

dex(U1,2,6,8,12,14,16) are not selected.

Interestingly, there were features that were selected in the models with uncertainty

but not in the models without uncertainty. These features are all price features(P1

to 4), global crude oil production, stock, and export(S1 to 3), MSCI World Standard

Index(F7), and global crude oil import and liquid fuels consumption(D1,2). These dif-

ferences are expected to have contributed to the difference in performance between the

two models.
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Potential Explanation Now, two main question rises. Why the performance orders

are different for each forecast horizon? How do some machine learning models outper-

form the linear model? To answer the first question, we first see the performance of

lagged value, in other words, the No-change model. The no-change model calculates the

R2 score of only the first lagged value of the target time series. Therefore, it calculates

the effect of autocorrelation of lag 1. For many cases, the No-change model’s R2 is posi-

tive, which means the autocorrelation’s effect is not negligible. Because the models with

different forecast horizons are exposed to the different levels of autocorrelation effect,

the performance orders could change.

The answer to the second question can come from many points, but the assumption

of Gaussian distribution seems most restricted to the linear models. Our linear model

assumes that the residual follows the normal distribution. However, because the model is

linear, the real-world fat-tailed data may not fit the linear model. The nonlinear model,

on the other hand, has the potential to explain such fat-tailed data. Another reason

is the in-sample over-fitting. For example, the decision tree model is notorious for its

tendency to over-fit. To overcome that issue, researchers develop a method to reduce

the shortcoming and one way is the random forest, one of our best performers. Last but

not least, the model may not converge well. Data is not always clean. Such ill-posed

data can hurt the model during the training stage which finds the optimal weights to

minimize the error.

4.3. Discussion and Possible Extensions

Volatility is one of the key variables for trading strategies, asset allocation, and risk

management. Now we introduce the quantitative analysis suggested by previous studies

on the usefulness of volatility forecasting. One way to express the quantitative advantage

for accurate future volatility is the certainty equivalent return (CER). Yin and Yang

(2016), Ma et al. (2018), Zhang et al. (2018), and Zhang et al. (2019) show that the

mean-variance utility investor can benefit from forecasting future volatility in terms

of CER. When the mean-variance utility investor considers the crude oil future and
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risk-free asset, the portfolio return is

Rp = wl(r + rf ) + (1 − w)rf

where w is the portfolio weight of crude oil futures, l is the leverage ratio, r is the excess

return, and rf is the risk-free rate. Then, CER of the investor is:

CER = R̄p − 1
2γσ2

p

where R̄p and σ2
p are the mean and the variance of the portfolio return Rp over the out-

of-sample period. It is straightforward that a more accurate prediction yields a higher

CER.

Another way to emphasize the importance of a volatility forecast is the Sharpe ratio

of the simple directional trading strategy. Following Easley et al. (2020), consider n

independent and identically distributed bets, where the outcome y of a bet with a

profit π > 0 with probability P [y = π] = p and a loss π with probability 1 − p. The

expected profit is E[y] = π(2p − 1), and the variance is V ar[y] = 4πp(1 − p). Then, the

Sharpe ratio is:

θ(p, n) = nE[y]√
nV ar[y]

= 2p − 1
2
√

p(1 − p)
√

n

Easley et al. (2020) stated that repeated trading with sufficiently large enough trials

(n = 13,000) can achieve the Sharpe ratio 2.04 with the small enhancement of directional

forecast p = 0.52. However, our models achieve far more accurate predictability around

0.6 to 0.7. Therefore, even smaller trials n = 100 can get a higher Sharpe ratio of 4.36

with p = 0.7.

The bet above is to analyze the advantage of accurate directional forecasting. How-

ever, in practice, we can consider the investment in the volatility ETFs such as OVX

or trading strategies based on volatility. Delis et al. (2022) introduces a simple strategy

for volatility trading. In the case where the s-step forecasted oil price volatility of the

model i at time t (denoted as R̂V t+s|t) is higher than that of the actual volatility at time
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t (denoted as RVt), the trader will take a long position in an asset that exhibits similar

performance to the oil realized volatility, such as OVX. Conversely, if the forecasted

volatility of model i at time t + s is lower than that of the actual volatility at time t,

the trader will take a short position. Consequently, the cumulative returns of model i,

ri over the out-of-sample forecasting period 1 to tN can be calculated as follows:

ri =
tN−s∑
t=1

(RVt+s − RVt)di
t

RVt

where di
t = 1 if R̂V t+s|t > RVt, and di

t = −1 if R̂V t+s|t ≤ RVt.

Over the past 11 years, HAR has generated cumulative returns of 1,589%, while

LASSO and RNN have generated cumulative returns of 2,448% and 2,355% over the

same period. It is clear that the machine learning models outperform the benchmark

HAR, with LASSO demonstrating the most impressive performance overall. However,

for RNN, which exhibited superior results in the recent period, the cumulative re-

turn increase exhibits a steeper slope than LASSO, and this period also encompasses

the COVID-19 global pandemic, suggesting that RNN models are also significant. We

showed the cumulative returns of LASSO, RNN, and benchmark HAR in Figure 3 below.

Figure 3. Cumulative Returns of LASSO, RNN, and HAR The forecasting horizon is monthly, and
both models contain uncertainty factors. Furthermore, both models utilize all features selected through feature
selection.

The preceding examples illustrate the effectiveness of a precise volatility forecast
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in various contexts. This paper demonstrates that integrating representative machine

learning models with the conventional HAR model can significantly enhance forecasting

performance.

Going further, we might be able to improve performance through various detailed

methodologies for time-series forecasting. There can be a variety of improvements -

for instance, combining multiple forecasting models such as dynamic model averaging,

dynamic model selection, or other ensemble methods (Wang et al. (2016); Audrino and

Knaus (2016); Ding (2018); Zhang et al. (2018)), improving feature selection methods

(Ghadimi et al. (2018); Karasu et al. (2020)), and reducing the noise of time series data

using bilateral filters, wavelet denoising, autoencoder, etc (Uddin et al. (2019); Wang

et al. (2017)).

5. Conclusion

This paper compares and analyzes the predictability of the realized volatility of crude oil

future prices with various forecasting models from April 2002 to April 2024 including the

Great Recession and COVID-19. With a wide variety of analyses and comparisons, we

can explore the possibility of the potential usage of machine learning models in the field

of volatility forecasting. A large set of explanatory variables is considered, and each

explanatory variable belongs to one of six groups -prices, supply, demand, financial,

implied volatility indices, and uncertainty factors. The walk-forward cross-validation

shows the out-of-sample forecasting performance of ten types of forecasting models -

HAR, TV-HAR, HAR-X, LASSO, ElasticNet, DTR, RFR, GBR, ANN, and RNN.

Although HAR is a popular conventional model in forecasting the realized volatil-

ity, the performance decreases in out-of-sample. Various machine learning models with

the momentum factors of the HAR were tested, and some of them have significantly

outperformed out-of-sample forecasts, such as the RFR and RNN.

Additionally, an investigation was conducted into the features selected in the models,

which revealed that the implied volatility indices and uncertainty factors were the most

frequently chosen. Furthermore, the PPI in China, the US, and the EU, the federal

funds rate, and the MSCI World Standard Index were identified as the most frequently

31



selected variables.

Diverse previous literature has dealt with the advantages of accurate volatility

forecasting. Volatility is one of the key variables for trading strategies, asset allocation,

and risk management. Therefore, future works to enhance the predictive power are

worthy with numerous potential extensions and applications.
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Appendix A. Data Description

Rolling Return Strategy

We forecast the monthly volatility for futures contracts, nearest to maturity. Because

each future contract must be exercised at the maturity date, to estimate continuous

volatility, daily future prices are calculated based on the roll-over rule.12 On each

monthly roll-over day, the oil price is adjusted by the price difference between the

future contract with the first nearest maturity and the future contract with the second

nearest maturity. The monthly volatility of oil price is calculated by the standard

deviation of daily WTI prices at each last business day of the month. A large body

of literature investigated the forecasting oil price volatility using historical realized

volatility. For example, Ma et al. (2017), Ma et al. (2018), and Wei et al. (2017) studied

forecasting models of realized oil volatility.

Data Preprocessing

Data needs preprocessing procedure for distinct frequency, stationarity, and integra-

tion before analysis. If the date of the publication of infrequent data is not specified,

we assume that it is announced at the last moment of the month (or the quarter).13

For example, the Fed Funds rate or MSCI data are monthly, but their release dates

are specified. Therefore, we use announced data from the exact date that they are an-

nounced and fill missing values by using them until the next announcement date. When

the announced date is not specified (such as categorical EPU data), we use them from

one day after its announced month (or quarter). Each categorical data, such as oil pro-

duction, consumption, and export, are country-level data. They are summed to make a

global value of each categorical data. For instance, country-specific oil production data

are aggregated to one global oil production.

The stationarity of all data from April 2002 to April 2024 is checked using Python’s

pmdarima package (Smith et al., 2017) except the lagged volatility variable, the

mean of lagged volatility, and the dependent variable itself. If we have to take the

12Each contract expires on the third business day before the 25th calendar day. When the 25th calendar day
is not a business day, the contract expires on the third business day before the latest business day prior to the
25th calendar day.
13Capacity utilization rate is the only weekly disclosed data, and each date of the announcement is recorded.
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difference of each sample more than twice to meet the criteria of stationarity (such

as adjusted Dicky-Fuller test), we set them to be 2. Even if high order differentia-

tion may ensure the stationarity, we believe those process will omit valuable information.

Appendix B. Training Models

Our forecasting models consist of two parts: feature selection and training. We first

select features for each sample using the f-regression method in Python’s scikit-learn

package (Pedregosa et al., 2011). As different sample has different characteristics, there

is no guarantee that all samples use the same features. Feature selection helps models

train in a reasonable time and helps prevent the notorious issue of over-fitting. After the

aforementioned transformation, we fit our data to various models. Because there could

be randomness during training models, scikit-learn models’ random-states are fixed to

a specific number. Without this, the model will predict different values each time we

train.

As the optimal predictive model may vary depending on the sample, the optimal

hyperparameters may also vary. Therefore, for each training sample, different hyper-

parameters may be used for each model. Scikit-learn’s GridSearchCV module is an

effective tool for identifying these optimal hyperparameters, and we have adopted it

for this purpose.

Appendix C. Methods of Empirical Analysis

Diebold-Marino Test

The Diebold-Marino (DM) test is a method of comparing the performance of two or

more forecasting models, introduced by Diebold and Mariano (2002) and modified by

Harvey et al. (1997). The DM test compares the forecasting errors of two models and

statistically verifies whether one model overpredicts or underpredicts compared to

other models. When g(ei,t) is the squared-error loss or the absolute error loss of the
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forecasting error ei,t = ŷi,t − yi,t for model i = 1, 2, the loss differential is defined by

dt = g(e1,t) − g(e2,t). The null hypothesis indicates that prediction accuracy for two

models are same. The DM statistics is defined as DM = d̄√
γ̂0/h

∼ N(0, 1), where

d̄ =
∑T

t=1 dt/h is the sample mean with h-step forward forecast, γ̄0 is the consistent

estimate of the variance for hd̄.

H0 : E[dt] = 0, H1 : E[dt] ̸= 0, ∀t
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