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Abstract

We consider an information-based asset market model where uninformed investors lack

perfect knowledge of the economic environment. In the model, uninformed investors

employ a reinforcement learning algorithm to find optimal investment strategies with-

out directly inferring the relationship between prices and asset payoffs. Applying this

approach to the settings considered by Grossman and Stiglitz (1980) and Breon-Drish

(2015), which are analytically tractable, we show that the model outcomes tend to con-

verge to the true rational expectations equilibrium. We extend our approach to more

complex settings that are not analytically solvable. The model outcomes still converge

to a limit, providing approximate solutions to these analytically intractable models.
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1 Introduction

A longstanding issue in finance concerns whether asset prices reflect all available information

in financial markets (Fama, 1970; Jegadeesh and Titman, 1993; Welch and Goyal, 2008;

Asness et al., 2013; McLean and Pontiff, 2016). To address this central question, Grossman

and Stiglitz (1980), Hellwig (1980), and Verrecchia (1982) develop information-based asset

market models that explain the specific mechanisms through which asset prices incorporate

both public and private information. While the main message of these papers is that financial

markets may not be perfectly efficient because investors would otherwise have no incentives to

acquire costly information, another important legacy of these seminal papers is the conceptual

framework that these papers have established for analyzing numerous issues related to market

efficiency.

A key assumption imposed in these papers, however, is that all investors have the perfect

knowledge of the economic environment, including payoff distributions, the information tech-

nologies of other investors, the populations of distinct types of investors, among other factors.

Due to this so-called rational expectations assumption, uninformed investors in these models

can accurately guess the true relationship between prices and asset payoffs. Relaxing this

assumption is important for two reasons: (i) the economic outcomes of models without the

rational expectations assumption may differ from those predicted by the above-mentioned

papers and (ii) without a thorough understanding of an economy that is not bound by this

assumption, we may not be able to rigorously assess the validity of investment strategies

widely used in practice.

Recognizing the limitations of models with the rational expectations assumption, Bray

(1982) and Routledge (1999) extend the model of Grossman and Stiglitz (1980) by assuming

uninformed investors do not have full rationality. While these studies have significantly

improved our understanding of this matter, the assumptions made in these papers are still

restrictive. Specifically, Bray (1982) assumes that uninformed investors are still aware of the

basic structure of the model, although they do not know the precise values of the model

parameters. As such, these investors can still infer that prices and asset payoffs are linearly

related to each other, as in Grossman and Stiglitz (1980), and thus naturally choose to run
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a linear regression on past data to estimate the precise form of this relationship. Meanwhile,

Routledge (1999) introduces a specific behavioral rule, such as mimicking the past successful

behavior of other investors, to formulate how uninformed investors update their investment

rules without providing solid microfoundations.

In our paper, we consider a setting in which uninformed investors have no prior knowl-

edge of the economic environment. We then assume that the uninformed investors use a

reinforcement learning algorithm, a machine learning tool which we will elaborate on later,

to learn optimal investment strategies from past data. While reinforcement learning is not

an entirely new concept to the field of machine learning, this learning algorithm has only

recently gained popularity after several pioneering approaches that integrate reinforcement

learning with deep learning models have made significant success in challenging tasks in

video games and board games such as Atari and Go; see Mnih et al. (2015) and Silver et al.

(2017). More importantly, a reinforcement learning algorithm is particularly suited to our

research question because this algorithm was originally developed to tackle dynamic opti-

mization problems where agents do not have any prior knowledge of the model environment;

see Watkins (1989), Watkins and Dayan (1992), and Williams (1992).

In our model, uninformed investors do not attempt to directly infer the relationship

between prices and asset payoffs from past data, unlike in Bray (1982). Instead, the unin-

formed investors merely calculate the average utility from realized historical data and adjust

their beliefs about the optimal investment strategy in a direction that marginally increases

their average utility. This particular type of reinforcement learning algorithm is known as

a policy-gradient method in the machine learning literature; see, for instance, Sutton et al.

(1999). Moreover, in line with the recent trends, we use a deep neural network to represent

the investment strategies of uninformed investors because an optimal investment strategy

can be potentially a nonlinear function of a price.

Using this approach, we first examine whether the outcomes in our model tend to con-

verge to the true rational expectations equilibrium in the canonical model by Grossman and

Stiglitz (1980). Interestingly, our numerical results show that our model outcomes, such the

investment strategies of uninformed investors and the coefficients of a price-and-payoff rela-

tionship, indeed converge to their corresponding outcomes in Grossman and Stiglitz (1980)
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under almost all reasonable parameter values we have tested. This result is not trivial

because while the theoretical convergence results for reinforcement learning algorithms are

generally available only for individual Markov decision problems (Watkins and Dayan, 1992),

the price-and-payoff relationship in our model varies endogenously over time due to interac-

tions among investors who keep updating their beliefs about optimal investment strategies

based on data. Nonetheless, our numerical results strongly suggest that the long-run limit of

our model coincides with the true rational expectations equilibrium, indicating that financial

markets eventually become informationally efficient—or, to the same extent that is achieved

in the model with the rational expectations assumption—if investors with no prior domain

knowledge employ a reinforcement learning algorithm.

To justify the validity of our approach, we apply this reinforcement learning-based ap-

proach to an extension of Grossman and Stiglitz (1980) that is still analytically tractable.

In the literature, Breon-Drish (2015) relaxes the restrictive assumptions regarding payoff

distributions, asset supply, and signal structures, imposed in Grossman and Stiglitz (1980),

and provides an analytic solution technique for the extended model. While this new solution

method can be applied to a broad range of settings, we consider one particular setting that is

highly empirically motivated. Specifically, we consider a model in which asset payoffs follow

a mixture of normal distributions exhibiting negative skewness and heavy tails—two widely

accepted stylized facts in the literature (Cont, 2001; Gabaix, 2009; Kelly and Jiang, 2014).

To be more specific, in this model, an unobservable economic state is first realized and then

the payoff distribution is determined, depending on the realized state. As advocated by Ang

and Timmermann (2012), this state-dependent framework is not only intuitive to understand

but also effectively captures many stylized facts, including the two aforementioned patterns.

Notably, our numerical results show that the outcomes in this extended model continue

to converge to the true rational expectations equilibrium calculated via the solution method

of Breon-Drish (2015). This result thus strengthens our experiment-based assertion that fi-

nancial markets tend to eventually become informationally efficient, even when investors lack

perfect knowledge of the economic environment. While this phenomenon is intriguing on its

own, this result also suggests that practitioners, who may not have a complete understand-

ing of the entire market structure and thus rely on a recent machine learning tool, that is,
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the reinforcement learning algorithm, are actually on the right track as these investors will

ultimately uncover optimal investment strategies in the long run, according to our results.

The fact that our approach successfully works for both the settings considered by Gross-

man and Stiglitz (1980) and Breon-Drish (2015) gives strong confidence that our approach

can be further applied to more complex settings that do not permit analytic solutions. This

additional work is important because given that extending the basic model of Grossman

and Stiglitz (1980) while keeping analytical tractability has been notoriously challenging,

our approach provides a valuable means of obtaining approximate solutions for a number of

extended versions of Grossman and Stiglitz (1980). Specifically, we consider two additional

extensions. First, we consider a more precise signal structure for the above-mentioned state-

dependent economy. Second, we incorporate borrowing and short-sale constraints into the

canonical model of Grossman and Stiglitz (1980).

In the first extension, we assume that informed investors in the above state-dependent

model receive two signals about the current economic state and the asset payoffs separately.

To the best of our knowledge, analytic solutions for this state-dependent model with separate

signals are not available. Our result, however, shows that the outcomes of this model still

converge to some limit, which can be considered the true rational expectations equilibrium of

this model. Moreover, the qualitative results of this model are consistent with our intuition.

Specifically, we find that the long-run limit of the demand function of uninformed in-

vestors in this model is lower than that arising in the model with a single signal, especially

when the price is at an intermediate level. This result makes sense because the additional

signal on the current economic state contains valuable contents, primarily when the price

falls in an intermediate region. More specifically, when the price is relatively high, unin-

formed investors believe that the current economy is highly likely to be in a good state and

thus, their demand function would be almost indistinguishable from the demand function

obtained in the model with a single signal. However, when the price falls, the degree of

information asymmetry between informed investors and uninformed investors increases for

the reason mentioned above and therefore, uninformed investors reduce their demand for the

asset, compared to the case with a single signal. But when the price falls further, uninformed

investors believe that the current economy is highly likely to be in a bad state. Thus, the
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demand function of uninformed investors in this case again becomes almost the same as the

demand function obtained in the model with a single signal.

Next, we consider an economy with financial constraints. Specifically, we consider a

setting where investors are subject to borrowing and short-sale constraints. In the literature,

Yuan (2005) extends the model of Grossman and Stiglitz (1980) by introducing borrowing

constraints. However, Yuan (2005) formulates borrowing constraints in a reduced form to

maintain tractability, which may not encompass a wide range of settings. In our paper, we

consider borrowing and short-sale constraints in their most natural forms. That is, we assume

that investors cannot take a position in a risky asset above a specific upper limit or below

a certain lower limit. that exceeds a certain upper limit or falls below a certain lower limit.

Again, while this model does not seem to allow for analytic solutions, our reinforcement

learning-based approach can be readily applied.

Our results first show that a long-run limit of the model outcomes still exists, as in

other cases. Moreover, in the long run, we find that when the price is low (high), the

demand for the risky asset by uninformed investors is higher (low) than that obtained in

the benchmark model without financial constraints. To understand this result, note that

borrowing constraints tend to be binding when the price is low and short-sale constraints tend

to be binding when the price is high. As such, compared to the outcomes in the benchmark

economy without financial constraints, the asset in our model tends to be underpriced when

the price is low and tends to be overpriced when the price is high. Accordingly, uninformed

investors believe that the asset payoff would be higher than that inferred from the benchmark

economy when the price is low and the opposite case must hold when the price is high. As

such, the demand function of uninformed investors in the model with financial constraints

must cross the demand function obtained in the benchmark model from above to below.

This paper contributes to the finance literature by investigating whether financial mar-

kets can eventually become informationally efficient, even when investors lack perfect knowl-

edge of the economic environment. We explore this issue by positing that uninformed in-

vestors with no prior domain knowledge employ a reinforcement learning algorithm. In the

previous studies in this literature, investors are assumed to still possess some partial knowl-

edge of the economic environment (Bray, 1982) or rely on behavioral rules to update their
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investment strategies (Routledge, 1999). Our paper extends the approaches of these papers

by considering settings where investors have no prior knowledge and use a novel machine

learning tool. In the literature, Bray and Kreps (1987) also develop a model similar to Bray

(1982), in which uninformed investors use Bayesian learning to update their beliefs about

the relationship between prices and asset payoffs. However, this model is not considered the

model with bounded rationality because Bayesian learning is generally regarded as a form of

rational learning.

Our paper also contributes to the literature by providing a useful means of calculating

approximate solutions for extended models of Grossman and Stiglitz (1980) that are ana-

lytically intractable. In the literature, there are only a few papers that have successfully

extended the model of Grossman and Stiglitz (1980). As mentioned, Breon-Drish (2015)

relaxes the restrictive assumptions regarding payoff distributions, asset supply, and signal

structures. However, his approach is still not fully far-reaching. For instance, his solution

method typically allows for only a single signal and cannot deal with financial constraints.

Regarding financial constraints, Yuan (2005) has made noticeable progress, but this model

specifies borrowing constraints in a stylized form, which may not capture a wide range of

situations, as mentioned. In our paper, we overcome these difficulties by utilizing the flexi-

bility of a reinforcement learning algorithm that does not require investors to have the full

knowledge of the economic environment. In the literature, Bernardo and Judd (2000) incor-

porate log-normal distributions for asset payoffs and constant-relative-risk-aversion (CRRA)

utility functions into Grossman and Stiglitz (1980). But this paper specifies the market-

clearing condition in an unconventional form for tractability. Also, we do not consider the

log-normal and CRRA setting in our paper because we believe that this setting is more

suitable for dynamic environments in which investors can transfer their wealth to the next

periods, which is beyond the scope of this paper; see Peress (2004) for related work. Albagli

et al. (2024) also relax the assumptions regarding payoff distributions, signal structures, and

preferences in a similar spirit to the above-mentioned papers. However, this paper considers

a setting with a continuum of investors receiving idiosyncratic signals, as in Hellwig (1980).

While applying the reinforcement learning-based approach to this framework is possible, this

task will be computationally more intensive because we need to introduce a large number of
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heterogeneous agents, which is not the main focus of this paper.

Our paper also contributes to the rapidly growing interdisciplinary field spanning eco-

nomics, finance, and machine learning. As an example, Calvano et al. (2020) show that

computer programs powered by artificial intelligence persistently learn to charge supra-

competitive prices in an oligopoly market without communicating with each other. In

the context of financial markets, another seminal paper by Dou et al. (2024) develops an

information-based asset market model with imperfect competitions and shows how informed

traders equipped with artificial intelligence technologies autonomously learn to collude and

achieve supra-competitive profits. As demonstrated by these pioneering papers, the merge

between machine learning and economics or finance is expected to create numerous research

questions and opportunities for researchers. In our paper, we take competitive markets as our

main test-bed environment and focus on the classical issues regarding market efficiency in the

absence of the rational expectations assumption, considering various extensions of Grossman

and Stiglitz (1980).

The paper is organized as follows. In Section 2, for the purpose of a self-contained

exposition, we present the model of Grossman and Stiglitz (1980) and the traditional learning

approach developed by Bray (1982). In Section 3, we build our main model with reinforcement

learning and apply our approach to a number of different settings. Section 4 concludes.

2 The Baseline Model and Traditional Approach

In this section, we first present the repeated version of the static model of Grossman and

Stiglitz (1980), which will serve as the baseline model throughout the paper, and then discuss

the traditional learning approach used by Bray (1982) to analyze an economy with bounded

rationality. The second part can be skipped if readers are more interested in our approach

that integrates reinforcement learning into Grossman and Stiglitz (1980).

2.1 Model with Full Rationality

As in Bray (1982) and Routledge (1999), we consider a repeated version of Grossman and

Stiglitz (1980). Time is discrete, indexed by t ∈ {0, 1, 2, ...}. There are two types of securities:
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a risky asset and a risk-free bond. The risky asset yields a payoff xt at the end of each

period t. The time-t payoff xt, which is independently and identically distributed (i.i.d.)

over time, follows a normal distribution with mean µx and standard deviation σx, that is,

xt ∼ N (µx, σ
2
x). Let τx = 1/σ2

x. The risk-free bonds are infinitely elastically supplied at a

rate normalized to 0.

The supply of the risky asset, denoted by zt, is randomly determined due to the presence

of noise traders who trade the asset for unexpected liquidity reasons. Specifically, the supply

of the asset at time t is determined by an i.i.d. normal random variable with mean µz and

variance σz, that is, zt ∼ N (µz, σ
2
z). Let τz = 1/σ2

z . The supply of the asset is not publicly

observable.

The economy is populated with informed investors and uninformed investors, in addition

to noise traders. The measure of informed investors is mI and the measure of uninformed

investors is mU . As in Bray (1982) and Routledge (1999), we assume that investors cannot

carry over their wealth to the next periods. Thus, every investor makes a static decision

at each period. All investors have constant-absolute-risk-aversion (CARA) utility functions

with a risk-aversion level η.

All informed investors observe the same signal st about a future payoff xt. The signal is

given by

st = xt + σsϵ
s
t ,

where τs = 1/σ2
s denotes the precision of the signal and ϵst ∼ N (0, 1). The error term ϵst is

independent of all other random variables. After observing the signal, each informed investor

updates her beliefs about the asset payoff as follows:

xt|st ∼ N
(
τxµx + τsst
τx + τs

,
1

τx + τs

)
.

Let pt denote the market clearing price of the asset, which is taken as given by all investors.

Then each informed investor chooses to buy qI(st, pt) ∈ (−∞,∞) units of the asset, where

qI(st, pt) =
E[xt|st]− pt
ηV ar(xt|st)

=
τxµx + τsst − (τx + τs)pt

η
, (1)
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which is a standard result in the CARA-Normal setup. We will often just use qIt to denote

the demand for the risky asset by each informed investor at time t.

Uninformed investors cannot observe the signal st. However, the uninformed investors

with full rationality can extract information about the asset from its price. Specifically,

uninformed investors postulate that the asset price is given by

pt = Ast +B(zt − µz) + C (2)

for some constants A, B, and C that are endogenously determined. Then we define

p̃t :=
pt − C

A
= st + ρ(zt − µz) = xt + σsϵ

s
t + ρ(zt − µz),

where ρ = B/A. Here, note that p̃t is solely determined by the price pt. Then, since ϵ
s
t and zt

are independent, after observing the asset price pt, uninformed investors update their beliefs

about asset payoffs as follows:

xt|pt ∼ N
(
τxµx + τsκp̃t
τx + τsκ

,
1

τx + τsκ

)
, (3)

where κ = τz
τz+ρ2τs

. As a result, the demand for the risky asset by each uninformed investor

is given by

qU(pt) =
E[xt|pt]− pt
ηV ar(xt|pt)

=
1

η
[τxµx + τsκp̃t − (τx + τsκ) pt] , (4)

which again comes from the standard result in the CARA-Normal setup. For uninformed

investors, a price change has two effects: the substitution effect and the information effect.

The substitution effect means that when a price falls, the asset becomes more attractive

relative to a risk-free bond. On the other hand, the information effect indicates that a price

drop may convey negative information about asset payoffs, making investors more reluctant

to purchase the asset.

The total demand for the risky asset is then equal to mIq
I
t +mU

t q
U
t . Hence, the market-

clearing price must satisfy

mIq
I
t +mUq

U
t = zt, (5)
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which allows us to represent the price pt in terms of st and zt from (1) and (4). In equilibrium,

the relationship between pt and (st, zt) derived from this market-clearing condition must

coincide with the relationship initially guessed by uninformed investors, represented in terms

A, B, and C in (2). The solutions for this fixed-point problem can be written explicitly and

are provided in Appendix A.1.

In equilibrium, prices cannot perfectly reveal the information due to the presence of

noise traders. Intuitively, if prices fully reveal all available information, investors would have

no incentives to acquire costly information beforehand, leading to a contradiction. While

Grossman and Stiglitz (1980) also consider the information acquisition game among investors,

we do not address this issue in this paper. In our model, the composition of informed and

uninformed investors is exogenously given, as in Bray (1982) and Routledge (1999).

2.2 Traditional Learning Approach

In this section, we provide a brief overview of the approach of Bray (1982), which relaxes

the rational expectations assumption in Grossman and Stiglitz (1980) to some extent. The

discussions in this section will be useful for comparing the traditional approach proposed by

Bray (1982) to our reinforcement learning-based approach.

To begin, we assume that uninformed investors continue to know the basic environment

of the economy. However, the uninformed investors are not aware of the precise values of the

model parameters, such as the mean of asset payoffs, the precision of a signal, the population

of informed investors, and so forth. Nonetheless, since uninformed investors at least know

the basic structure of the economy, these investors can reasonably postulate that the price,

pt, and the asset payoff, xt, are still linearly related to each other as in Grossman and Stiglitz

(1980). Specifically, uninformed investors postulate that the price-and-payoff relationship is

given in the following linear form:

xt = a+ bpt + cϵt, (6)

where a, b, and c are some constants to be estimated and ϵt ∼ N (0, 1) is an error term. In
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the full rational expectations model, the true values of these constants are given by

a =
τxµx − τsκ× C

A

τx + τsκ
, b =

τsκ

A(τx + τsκ)
, c =

√
1

τx + τsκ
,

which are derived from the property in (3) and the fact that all random variables follow

joint normal distributions. Accordingly, we can naturally assume that uninformed investors

run a linear regression on past data of prices and asset payoffs to estimate these coefficients,

assuming the realized past asset payoffs are publicly observable.

More specifically, we first assume that all uninformed investors initially have the same

beliefs about the coefficients a, b, and c, which substantially simplifies our analysis. The

initial estimates of these coefficients are denoted by â0, b̂0, and ĉ0. Then, at the beginning

of each time t ≥ 2, uninformed investors collect the data on prices and asset payoffs from

the most recent M periods, denoted by DM
t := {(pt−M , xt−M), ..., (pt−1, xt−1)}. The idea

of using only relatively recent data is reasonable because the data observed in the distant

past was generated based on the outdated beliefs that uninformed investors held about the

price-and-payoff relationship at that time. The parameter M is hereafter called the memory

size.

Uninformed investors then run the ordinary least square regression on this data, using

the price as an explanatory variable and the asset payoff as a dependent variable. From this

regression, these investors can update their estimates of the coefficients a, b, and c at each

time t, denoted by ât, b̂t, and ĉt, respectively. For clarification, at time t = 1, investors do

not perform a regression on single-point data.

Based on these estimates, each uninformed investor with CARA utility sets her demand

for the risky asset to

qUt =
Ê[xt|pt]− pt
ησ̂2(xt|pt)

=
ât + b̂tpt − pt

ηĉ2t
, (7)

which is consistent with the formula in (4), where Ê[·|·] and σ̂(·|·) indicate the estimated

conditional mean and the standard error of the regression, respectively. Here, note that

depending on the realized outcomes, the estimated coefficient b̂t can be potentially larger than

1, while we can easily verify that this outcome does not occur in the true rational expectations
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equilibrium of Grossman and Stiglitz (1980). This result means that the positive information

effect of a price can dominate the substitution effect in our model, especially when the market

is substantially deviated from the true rational expectations equilibrium.

Regarding informed investors, as in Bray (1982), we assume that informed investors

are at least aware of the exact forms of asset payoff distributions and signal structures,

including all relevant parameter values. Accordingly, the demand for the asset by each

informed investor, qIt , is still given by the expression in (1) obtained in the baseline model.

The market-clearing price pt is then determined by the following condition:

mIq
I
t +mUq

U
t = zt,

which implies

pt =
mI(τxµx + τsst)ĉ

2
t +mU ât − ηĉ2t zt

mI(τx + τs)ĉ2t +mU(1− b̂t)
. (8)

Here, following Bray (1982), we say that the market is in the temporary equilibrium if the

price satisfies this market-clearing condition. This equilibrium is called “temporary” because

uninformed investors do not accurately infer the relationship between prices and asset payoffs

and therefore, the relationship derived in (8) holds only temporarily. For clarification, in the

expression in (8), we ignore a measure-zero set of events in which mI(τx + τs)ĉ
2
t +mU(1− b̂t)

collapses to zero.

We conduct numerical simulations to examine whether the outcomes of this economy

converge to the true rational expectations equilibrium, pinned down in Section 2. While Bray

(1982) provides a sufficient condition for convergence by imposing some additional restrictive

assumptions on the prior knowledge of uninformed investors, we are not aware of a more

general proof for convergence in our context, which we leave for future research.

Figure 1 depicts the convergence results of this model by choosing reasonable parameter

values. The top three panels in the figure plot the trajectories of estimated values of a, b, and

c, respectively, over time. Recall that these coefficients represent the uninformed investors’

beliefs about the price-and-payoff relationship. The results show that all these coefficients

converge to their corresponding values arising in the true rational expectations equilibrium.

Moreover, the graphs indicate that the uninformed investors’ beliefs about the price-and-
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Figure 1: This figure illustrates the long-run behavior of our model outcomes. The top three panels
plot whether the estimated coefficients of a, b, and c converge to their corresponding coefficients
arising in the true rational expectations equilibrium. In these panels, the blue lines represent the
estimated coefficients and the orange lines indicate the true coefficients. The bottom three panels
plot whether the estimated coefficients of A, B, and C converge to their corresponding coefficients
emerging in the true rational expectations equilibrium. Here, these coefficients are estimated by
econometricians, not by uninformed investors directly. In these panels, the blue lines plot the
estimated coefficients and the orange lines represent the true coefficients. The parameter values
chosen in this example are µx = 1, σx = 0.2, σs = 0.1, µz = 0, σz = 2, η = 5, mI = 1, and mU = 2.
The initial estimates of a, b, and c are â0 = 0.5, b̂0 = 0.3, and ĉ0 = 0.4. The memory size is set to
M = 8000. The simulation ends at T = 10000.

payoff relationship exhibit big swings in early stages. Nonetheless, the result shows that the

market eventually identifies the true relationship between prices and asset payoffs in the long

run.

The bottom three panels in Figure 1 plot the estimated coefficients A, B, and C, which

determines the relationship between pt (price) and the pair of st (signal) and zt (supply), as

expressed in (2). Specifically, in this model, uninformed investors do not directly estimate

these coefficients by running this form of regression. In fact, this estimation will not be

useful for uninformed investors because the current private signal and supply are not publicly

observable, even if we assume that the past data on these variables is publicly observable.

Nonetheless, as econometricians, we can estimate the values of A, B, and C by running this

form of regression. This task enables us to examine whether this more refined relationship
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between prices and the pair of asset payoffs and supplies also converges to its corresponding

counterpart arising in the true rational expectations equilibrium. Our numerical results

again show that all these coefficients converge to their corresponding values obtained in

the true rational expectations equilibrium. This result strengthens our assertion that while

uninformed investors do not have any prior knowledge of the economic environment, the

market eventually become informationally efficient—to the same extent that is achieved in

the economy with full rationality.

3 Bounded Rationality and Reinforcement Learning

In this section, we assume that uninformed investors have no prior knowledge of the economic

environment, while informed investors are still aware of the exact form of payoff distributions

and signal structures as in the previous section. In this setting, due to the lack of domain

knowledge, uninformed investors cannot correctly infer the functional form of the price-and-

payoff relationship. To overcome this limitation, uninformed investors use a novel machine

learning tool, that is, a reinforcement learning algorithm, to learn optimal investment strate-

gies. The key feature of this approach is that uninformed investors directly adjust their

beliefs about optimal investment strategies based on realized data instead of estimating the

precise relationship between prices and asset payoffs as done in Bray (1982).

The two widely used reinforcement learning algorithms are a Q-learning algorithm

(Watkins, 1989; Watkins and Dayan, 1992; Mnih et al., 2015; Silver et al., 2017) and a

policy-gradient algorithm (Williams, 1992; Sutton et al., 1999; Schulman et al., 2015). See

also Sutton and Barto (2018) for a textbook-style treatment of these two distinct algorithms.

Briefly put, a Q-learning algorithm attempts to learn the value function for all state variables

and choice variables through trial and error and then exploits the accumulated knowledge

to take an optimal action that maximizes the value function. On the other hand, a policy-

gradient algorithm directly attempts to learn an optimal policy function by adjusting the

beliefs about an optimal policy function in a direction that marginally increases the average

utility calculated from realized data ex post. In the machine learning field, the Q-learning

algorithm is more widely used in settings where state and choice variables are discrete and
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Figure 2: This figure plots a deep neural network that represents the investment policy function of
uninformed investors. The input variable is a price pt. The output variable, qU (pt), is the demand
for the risky asset. The weights on the edges are denoted by θt = {θit}i. The nodes representing
bias terms are omitted in this figure. The symbol Σ denotes the weighted sum used in deep learning
models and a function gj denotes the activation function applied at the j-th layer.

the policy-gradient algorithm is considered more suitable for settings with continuous state

and action spaces. As such, in this paper, we will use the policy-gradient algorithm. In the

literature, Calvano et al. (2020) and Dou et al. (2024) use Q-learning by discretizing state

and action spaces, while Buehler et al. (2019) employ a policy-gradient algorithm to study

optimal hedging strategies for options.

In the subsequent sections, we will describe the policy-gradient algorithm in more detail

in our specific context instead of describing this algorithm in generic settings. Since our model

is basically a repeated version of a static model and does not consider mixed strategies, the

policy-gradient algorithm can be described in a very simple manner.

3.1 Canonical Environment

In this section, we first apply our reinforcement learning-based approach to the canonical

environment of Grossman and Stiglitz (1980). As in Section 2.2, this task enables us to

examine whether our model outcomes continue to converge to the true rational expectations

equilibrium. We will also consider several extensions of this canonical model in later sections.
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3.1.1 Model with Reinforcement Learning

As mentioned above, the demand for the risky asset by each informed investor, qIt , is still

given by the expression in (1). Meanwhile, each uninformed investor posits that an optimal

investment strategy is a function of a price and some unknown parameters:

qUt = qU(pt;θt),

where θt = {θit}i denotes the set of the unknown parameters that must be estimated over

time. Moreover, following recent trends in machine learning, each uninformed investor uses

a deep neural network to represent the unknown policy function qU(p;θ).

As shown in Figure 2, a neural network consists of nodes (or neurons), arranged in

distinct layers, and edges connecting the nodes in adjacent layers. Moreover, a certain weight

is assigned to each edge of the network and a specific activation function is applied at each

intermediate layer. The above-mentioned parameters, θt = {θit}i, indicate these weights on

the edges. We choose activation functions appropriately. Then, for each input value, the

weights and activation functions of the network produce the final output of the network,

following the standard feedforward neural network operations; see, for instance, Goodfellow

et al. (2016) for details. In our model, the input variable is a price pt and the output variable,

qU(pt;θt), is the demand for the risky asset by each uninformed investor as mentioned before.

To proceed further, we assume that all uninformed investors set the initial values of

the weights, that is, θ0 = {θi0}i, to be identical. This assumption allows us to treat all

uninformed investors as a single representative investor. We typically set the initial values

of the weights arbitrarily, following the convention in machine learning. We will soon discuss

how the parameters, {θit}i, are updated over time.

Given that uninformed investors make investment decisions in this manner, the market-

clearing price pt is the price that satisfies the following condition:

mIq
I(pt) +mUq

U(pt;θt) = zt,

where zt ∼ N (µz, σ
2
z) denotes the asset supply as in the baseline model. We solve for
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the market-clearing price numerically, using a divide-and-conquer method. One technical

concern is that the above equation may not have a solution because the demand function

of uninformed investors can be highly nonlinear, especially in early stages. If such a case

occurs at a certain date, following the convention in the market microstructure literature,

we assume that no trades occur at that date and move forward to the next date; see, for

instance, Rostek and Yoon (2023). In other words, what happens at this particular date

will be ignored by uninformed investors in their learning procedures. In fact, although we

formally adopt this ad-hoc rule to deal with unusual cases, we have not encountered such

cases in our numerical simulations under almost all reasonable parameter values.

Policy-gradient algorithm: We now describe the policy-gradient algorithm that is used

to update the weights, θt = {θit}i, associated with the investment policy function qU . We

first assume that uninformed investors update the weights at every N periods, where N is a

fixed integer. That is, uninformed investors update their investment policy functions only at

the dates equal to t = lN , where l ∈ {1, 2, 3, ...}. We call N the update interval length. We

adopt this infrequent learning procedure because updating the investment policy function

at every period would be computationally inefficient as this procedure will repeatedly use

largely overlapped data at every period.

Next, as in Section 2.2, uninformed investors update their investment policy functions

using the data from only the most recent M periods. Let DM
t := {(ps, xs)}t−1

s=t−M denote

this data set as before. While the memory size M can be chosen to be larger than the

update interval length N , we simply set the memory size equal to the update interval length.

This choice is reasonable, particularly in our model, because the data generated before the

previous updating date were produced under the outdated beliefs about optimal investment

strategies. Therefore, using such old data may not improve the quality of learning.

Now, at the beginning of each updating date t = lN , each uninformed investor calculates

the average partial derivative (that is, gradient) of her realized utility over the latest data

set DM
t with respect to each unknown parameter θi:

∆i
t :=

1

M

t−1∑
s=t−M

∂

∂θi
u
(
(xs − ps)q

U(ps;θt−1)
)
. (9)
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Here, denoting the investment policy function used in this expression by θs is unnecessary

because the investment policy function is updated only at the dates equal to t = lN . Intu-

itively, the gradient ∆i
t approximately measures the rate of changes in the investor’s expected

utility, if (i) she adjusts the parameter θit−1 by an infinitesimally small amount while fixing all

other parameters and (ii) all other investors keep their investment strategies. Accordingly,

each uninformed investor reasonably (or heuristically) updates each parameter θit−1 using the

following update rule:

θit ← θit−1 + αt∆
i
t, (10)

where αt is a so-called learning rate, which we will explain in more detail later. In other

words, the investor adjusts the parameter θit−1 in a direction that marginally increases her

average utility calculated from the past data. After updating the parameters θit−1 for each i

at time t = lN , investors keep using these new parameters until the next updating date.

While this procedure clearly describes the key idea of the policy-gradient algorithm,

we add one more procedure to this algorithm, following the conventions. Specifically, we

divide the data set DM
t into multiple batches of equal size and update the weights of the

policy network, θt−1 = {θit−1}i, applying the procedures in (9) and (10) over different batches

separately. We then repeat this one cycle of learning procedure over the same data set DM
t

multiple times. The number of repetitions of this procedure is called the number of epochs.

Both the batch size and the number of epochs are chosen appropriately.

Lastly, the learning rate αt controls the speed at which investors update the parameters

θt−1 = {θit−1}i. If we choose a high learning rate, the learning process will be accelerated,

but we may also increase the risk that the updated policy function would overshoot the true

policy function. Conversely, if we choose a low learning rate, we can reduce the chance of the

policy function diverging, but we may need to wait a long time or even fail to find an optimal

policy. In general, we initially set the learning rate to an appropriately high level and then

decrease this rate gradually over time. This specification allows for faster learning in early

stages, followed by more delicate adjustments as the policy function converges toward the

true optimal solution. This type of a parameter is commonly called a hyperparameter in the

machine learning field.
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3.1.2 Results

In this section, we discuss the model results. Figure 3 presents the results of this model, using

the same parameters as those used in Figure 1. In this simulation, the number of hidden

layers in the network is 5 and each hidden layer has 100 nodes. All other parameter values,

such as the learning rate, the update interval length, and so forth, are specified in the figure.

The top four panels in Figure 3 depict how the investment policy function, qUt (p) =

qU(p;θt), viewed as a function of price p, evolves over time. In each panel, the blue line

represents the investment policy function trained in our model, while the orange line indicates

the true investment policy function arising in the rational expectations model, which is

obtained in (4). The result shows that the investment policy function in our model converges

to the true solution in the long run, even though the initial investment policy function is

chosen arbitrarily. The left and right boundaries of the price interval in the graphs are

chosen to ensure that 99% of the realized data points are included within this interval.

Also, as shown in the top-middle panel, the investment policy function converges to the true

solution relatively faster in the region of intermediate price levels. This result is intuitive

because investors would struggle to learn the optimal investment policy over the region of

extreme price levels, as these investors are less likely to encounter data that falls in such an

extreme region.

The bottom three panels in Figure 3 illustrate how the estimated values of coefficients

A, B, and C evolve over time. Specifically, in this task, as in Section 2.2, we run a linear re-

gression to estimate these coefficients, using the past data on prices, private signals, and asset

supplies, from the perspective of econometricians. Then, as the graphs show, these estimated

coefficients also converge to their corresponding values in the true rational expectations equi-

librium in the long run. This result strengthens our assertion that financial markets tend to

eventually achieve the maximum possible level of informational efficiency even if uninformed

investors posses no prior knowledge of the economic environment. Before proceeding further,

notice that the trajectories of estimated A, B, and C exhibit more oscillations around their

corresponding true values, compared to the regression-based results in Figure 1. Although

this finding is intriguing, we currently do not have a satisfactory explanation for this result.
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Figure 3: This figure depicts the results of our model when we apply the reinforcement learning
algorithm to the canonical environment of Grossman and Stiglitz (1980). The top four panels show
how the investment policy function qUt = qU (p;θt), as a function of price p, evolves over time,
where T denotes the time at which the simulation ends. In each panel, the blue curve represents
the trained investment policy function and the orange line represents the true policy function in
the rational expectations model. The left and right boundaries of the graphs are chosen to ensure
that 99% of the realized data points are included within that interval. The bottom three panels
depict how the estimated values of coefficients A, B, and C evolve over time. Here, we plot these
trajectories only at the update dates, that is, at the dates equal to t = lN , where l ∈ {1, 2, 3, ...}.
The model parameter values are µx = 1, σx = 0.2, σs = 0.1, µz = 0, σz = 2, η = 5, mI = 1, and
mU = 2. The update interval is N = 2000. The number of hidden layers is 5. The number of
nodes in each hidden is 100. The batch size is 64. The number of epochs is 10. The learning rate
is initially set to 10−4 and then is reduced by a factor 0.999 every 100 epochs. The ReLU function
is used as an activation function. The simulation ends after 3000 updates in this example.

Here, note that we obtain this convergence result only when the hyperparameters (or

learning-related parameters), such as the learning rate, the number of hidden layers, the

number of nodes in each layer, among others, are appropriately chosen through trial and

error. For instance, if we set the learning rate to 0, the model will never find the true

rational expectations equilibrium. On the other hand, if we set the learning rate to 1,

the model outcomes will never reach a stable state. Unfortunately, we are not aware of a

systematic method to identify the hyperparameters that ensure convergence. In the literature,

a general convergence result is available only for individual Market decision problems without

any interactions among agents Watkins and Dayan (1992). Nonetheless, according to our

numerical simulations, under most reasonable parameter values, our model tends to converge
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Figure 4: This figure depicts the results when we use a neural network without any hidden layers,
leveraging the fact that the true investment strategy is a linear function of a price in this canonical
environment. In the top four panels, the left and right boundaries of the graphs are chosen to
ensure that 99% of the realized data points are included within that interval. In this simulation,
the learning rate is initially set to 0.001 and then is reduced by a factor 0.999 every 50 epochs. All
other parameter values are the same as those in Figure 3. The simulation ends after 600 updates.

to the true rational expectations as long as we choose the hyperparameters appropriately.

Further results can be provided upon request.

In addition, in the above work, one may also wonder what would happen if we use a

neural network without any hidden layers because this neural network of no hidden layers

essentially represents a linear function and we know that the true investment policy function is

a linear function of a price in Grossman and Stiglitz (1980). Although uninformed investors in

the model are not aware of this fact, which is the crucial assumption of our setting, it is worth

examining whether the model outcomes would converge to the true rational expectations

equilibrium if uninformed investors use this simple neural network in their reinforcement

learning process. Alternatively speaking, this setting is closer to Bray (1982), who also

assumes that uninformed investors are aware of the linear structure of the model. However,

in our setting, these investors still use reinforcement learning to learn optimal investment

strategies, while uninformed investors in Bray (1982) use a regression approach to estimate

the price-and-payoff relationship.

Figure 4 plots the results of this work. As expected, the model outcomes again converge
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to the outcomes that emerge in the true rational expectations equilibrium. Moreover, in this

setting, once uninformed investors have learned the optimal investment policy function pre-

cisely enough in the region of intermediate price levels, these investors do not need additional

data to learn the optimal investment policy function in the region of extreme price levels due

to the linearity assumption. Accordingly, as shown in the bottom three panels, the model

outcomes tend to converge to the true rational expectations equilibrium relatively faster than

in the previous case where uninformed investors are unaware of the linear structure of the

model and thus use a highly complex deep neural network to represent their investment

policy functions.

3.2 Non-Standard Environment

In what follows, we consider several extensions of Grossman and Stiglitz (1980), in which

a linear relationship between prices and asset payoffs no longer holds. This task has two

goals. First, we apply our approach to an extended model that is still analytically tractable

and examine whether our model outcomes still converge to the true rational expectations

equilibrium in the absence of a linear structure. Second, we extend our approach to more

general settings that are not analytically tractable and provide the approximate solutions for

the true rational expectations equilibrium of these models by obtaining the long-run limit of

our model without rational expectations.

In the literature, Breon-Drish (2015) extends the model of Grossman and Stiglitz (1980)

by relaxing restrictive assumptions on payoff distributions, asset supply, and signal structures

to some extent. While the new solution developed by Breon-Drish (2015) covers a broad range

of settings, in this paper, we consider one particular setting that is strongly motivated from

empirical findings. Specifically, we consider a model in which asset payoffs follow a mixture

of normal distributions, exhibiting negative skewness and heavy tails. These two patterns are

the widely supported stylized facts (Cont, 2001; Gabaix, 2009; Kelly and Jiang, 2014). Also,

Ang and Timmermann (2012) show that a regime-based Markov chain model, in which asset

payoffs follow a mixture of normal distributions, explain many additional stylized facts besides

negative skewness and heavy tails. Moreover, the solution technique invented by Breon-Drish
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Figure 5: The black curve plots a typical pattern of the distribution of a mixture of normal random
variables. The blue dotted curve plots the distribution of a normal random variable under state A.
The orange dotted curve plots the distribution of a normal random variable under state B.

(2015) is applicable to this extension. In this regard, we take this setting as another test bed

and examine the market efficiency issue in the absence of rational expectations. Regarding

the second goal, we consider models with multiple signals and financial constraints.

3.2.1 Asset Payoffs with Negative Skewness and Heavy Tails

Model Setup: As mentioned, we now assume that asset payoffs follow a mixture of normal

distributions. Specifically, in this model, the asset payoff xt is drawn randomly according to

the following law:

xt =

 xA
t with probability λ

xB
t with probability 1− λ,

where xA
t ∼ N (µA

x , σ
A
x ) and xB

t ∼ N (µB
x , σ

B
x ) for some constants µA

x , σ
A
x , µ

B
x , and σB

x . That is,

in this model, a state π ∈ {A,B} is realized first and then the asset payoff xt is determined,

depending on the state. State A occurs with a probability λ and state B occurs with the

remaining probability. At each time, the state is realized independently of any other events.

We also use πt ∈ {A,B} to denote the realized state at time t. For each state π ∈ {A,B},

let τπx = 1/(σπ
x)

2.

Throughout, we interpret state A as a good state and state B as a bad state by choosing

the parameters (µA
x , σ

A
x ) and (µB

x , σ
B
x ) such that µA

x > µB
x and σA

x < σB
x . That is, the good
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state represents the state with a high mean payoff and low variance, while the bad state

represents the state with a low mean payoff and high variance. A typical pattern of the

distribution of a mixture of normal random variables is shown in Figure 5. As indicated

by this figure, a mixture of normal distributions is known to exhibit negative skewness and

heavy tails under the above-mentioned parameter condition (Ang and Timmermann, 2012).

In the model, informed investors still receive a single signal st about the asset payoff in

the following form:

st = xt + σsϵ
s
t ,

as in the canonical model. In the next section, we consider a setting in which informed

investors receive two signals about the prevailing state and the asset payoff separately.

Interestingly, we can pin down the solution of this model analytically, following the

method invented by Breon-Drish (2015) as mentioned above, provided that we impose the

rational expectations assumption. For self-contained exposition, we briefly present how to

solve this model analytically.

To begin, note that the cumulative distribution function of a payoff x, denoted by F (x),

is given by

F (x) = λΦ

(
x− µA

x

σA
x

)
+ (1− λ)Φ

(
x− µB

x

σB
x

)
, (11)

because the payoff follows a mixture of normal distributions, where Φ(·) is the cumulative

distribution function of a standard normal random variable. Then Breon-Drish (2015) shows

that the optimal demand for the asset by each informed investor is equal to

qIt (st, pt) =
τsst −GI(pt)

η
, (12)

where

GI(p) = (g′I)
−1(p) and gI(v) = log

(∫ ∞

−∞
exp

(
vy − 1

2
τsy

2

)
dF (y)

)
. (13)

We can compute the integral in the above expression using the Gauss-Hermite quadrature

method, given that the distribution function F is represented by a sum of two normal distri-

bution functions as shown above.
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Regarding the investment problems of uninformed investors, we define p̃t as follows:

p̃t = st + ρ(zt − µz),

where ρ = − η
mIτs

, as done in Grossman and Stiglitz (1980). We will later see that p̃t serves

as a sufficient statistic in this model. We also let σ2
U = σ2

s + ρ2σ2
z and τU = 1/σ2

U . Then,

Breon-Drish (2015) shows that the optimal demand of each uninformed investor is given by

qUt (p̃t, pt) =
τU p̃t −GU(pt)

η
, (14)

where

GU(p) = (g′U)
−1(p) and gU(v) = log

(∫ ∞

−∞
exp

(
vy − 1

2
τUy

2

)
dF (y)

)
. (15)

Here, note that uninformed investors cannot construct p̃t directly from the signal st and asset

supply zt, because these variables are not publicly observable. However, we will soon see that

p̃t can be constructed solely from the price pt without having to know the realized values of

the signal and asset supply.

The market-clearing condition is then described as

mIq
I(st, pt) +mUq

U(p̃t, pt) = zt,

which can be rewritten as

1

η
(mIτs +mUτU)p̃t − µz =

1

η
[mIGI(pt) +mUGU(pt)],

due to the fact that ρ = − η
mIτs

and p̃t = st + ρ(zt − µz). From this relationship, we can pin

down the market-clearing price in terms of the signal st and the asset supply zt, using the in-

verse function of G(p) := 1
η
[mIGI(p) +mUGU(p)]. Moreover, using this relationship, we can

also express p̃t in terms of only the price pt. This observation finally confirms that p̃t serves as

a sufficient statistic in this model by summarizing the payoff-relevant information embedded
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Figure 6: This figure depicts the results of the model in which asset payoffs follow a mixture
of normal distributions. Specifically, the four panels show how the investment policy function
of uninformed investors, qU (p;θt), evolves over time. In each panel, the orange curve plots the
investment policy function arising in Breon-Drish (2015), in which full rationality is imposed, and
the blue curve plots the investment policy function in our model without the rationality assumption.
In the last panel, the green (red) dotted line plots the investment policy function in the canonical
model of Grossman and Stiglitz (1980) with a fixed state set to A (B). The left and right boundaries
of the graphs are chosen to ensure that 99% of the realized data points are included within that
interval. The parameter values are (µA

x , σ
A
x ) = (1.2, 0.2), (µB

x , σ
B
x ) = (0.9, 0.3), λ = 0.6, σs = 0.1,

µz = 0, σz = 2, η = 5, mI = 1, and mU = 2. The update interval is set to N = 20000. The batch
size is 2000. The number of epochs is 20. The learning rate is initially set to 10−4 and then is
reduced by a factor 0.99 every 100 epochs. The number of hidden layers is set to 5. The number
of nodes on each hidden layer is set to 100. The ReLU function is used as the activation function.
The simulation ends after 400 updates in this example.

in the price. As a result, uninformed investors can determine their demand for the asset

solely from the price, following the formula in (14), completing equilibrium characterization.

Next, notice that when uninformed investors have no prior knowledge of the economic en-

vironment, we need not make any changes in their learning procedures from those described in

Section 3.1.1. This statement is easy to understand because the learning algorithm designed

by agents who are not aware of the economic environment cannot be designed depending on

the environment. Moreover, informed investors behave the same way as in the model with

the rational expectations. As such, since we have already solved the individual problems

of informed investors above, we can readily incorporate the reinforcement learning into the

model with a mixture of normal distributions.

Results : Figure 6 plots our model results. Specifically, the orange curve in each panel

denotes the true investment policy function of uninformed investors in the rational expec-

tations equilibrium. As expected, the demand function of uninformed investors is no longer

linear in the price. Notice that the investment strategy exhibits a tilted hump-shaped pat-

tern. We can understand this pattern as follows. When the price is high, say, around 1.45,

which is close to µA
x , uninformed investors would believe that the current economic state is
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highly likely to be the good state. As such, the demand function of uninformed investors

is close to the demand function obtained in the canonical model of Grossman and Stiglitz

(1980) with a fixed state set to A. Meanwhile, when the price starts to fall, the demand

function of uninformed investors becomes less steeper. This result is intuitive because when

the price is at an intermediate level, uninformed investors struggle more to deduce the cur-

rent economic state. Due to this elevated uncertainty about the current state, uninformed

investors respond less elastically when the price falls.

However, when the price is sufficiently low, say, around 0.4, uninformed investors would

believe that the current economic state is highly likely to be the bad state. Thus, the demand

function of uninformed investors is close to the demand function arising in the canonical model

of Grossman and Stiglitz (1980). Interestingly, when the price is at an intermediate level, say,

around 0.7, the slope of the demand function can even less steeper than the demand function

obtained when the price has a sufficiently low level. This result can be understood using the

same reasoning discussed above. That is, when the price falls substantially, the uncertainty

level about the current economic state is reduced and therefore, uninformed investors increase

their demand relatively more elastically when the price falls.

Moreover, for clarification, note that when the price is extremely high, uninformed

investors believe that the realized state is more likely to be the bad state because the payoff

variance in the bad state is larger than that in the good state. However, such a region does

not show up in our graph because realized data points rarely fall in that region.

Regarding the convergence result, the four panels in the figure show that the outcomes

of the model without the rationality assumption converge to the true rational expectations

equilibrium. These results give us strong confidence that financial markets eventually be-

come informationally efficient even if we consider more complex environments and abandon

the rational expectations assumption at the same time. In other words, these results suggest

that uninformed investors with no prior domain knowledge can effectively capture the non-

linear relationship between prices and payoffs by utilizing reinforcement learning algorithms,

although these investors do not directly attempt to infer this relationship from data. While

these results are obtained from simulation experiments, we believe that these findings signifi-

cantly improve of our understanding of the role of reinforcement learning in driving financial
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markets to achieve informational efficiency.

In the subsequent sections, we will consider several further extensions that are not

analytically tractable. As these models do not permit analytic solutions, we are not able to

examine whether the market outcomes continue to converge to the true rational expectations

equilibrium. Nonetheless, relying on the previous results, we can expect that the market

outcomes will still converge to a limit, if exists, which can be regarded as the true rational

expectations equilibrium. In this regard, our approach can be used not only for investigating

the market efficiency issue but also for obtaining the approximate solutions to those models

that are not analytically solvable.

3.2.2 State-Dependent Model with Separate Signals

An extension we can readily apply our approach to is a state-dependent economy, which

we have considered in the previous section, in which informed investors receive two signals

about the unobservable state and the asset payoff separately. Specifically, we assume that

each informed investor first receives a signal ht, which takes a value of either A or B. The

probability of the signal being correct is assumed to be γ:

γ = Pr(ht = A|πt = A) = Pr(ht = B|πt = B),

which is assumed to be larger than 1
2
. We further assume that the signal ht is independent

of any other events and independently drawn over time.

After receiving the signal about the state, each informed investor receives an additional

signal st about the asset payoff xt in the same form as before:

st = xt + σsϵ
s
t .

The informed investors then make the investment decisions using these two signals ht and

st together. The other parts of the model remain unchanged from the previous setting with

a single signal. In fact, we may consider a more general state-dependent economy, in which

the supply of the asset, the population of informed investors, and the risk-aversion level also
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change, depending on the state. But we do not seek to consider these more general settings

for the sake of brevity.

An analytical solution for the extended model with separate signals is not available

at the moment of writing this paper. In particular, the approach of Breon-Drish (2015)

accommodates only a single signal. However, we can still solve this model using the rein-

forcement learning approach because (i) the individual problem of informed investors is still

tractable and (ii) the learning procedure of uninformed investors does depend on a particular

environment.

To proceed, note first that the individual problem of informed investors can be similarly

solved as before. Let λ̃t(ht) denote the posterior beliefs of informed investors regarding the

probability of the state being A, conditional on the realized signal ht. Specifically, depending

on the realized signal ht ∈ {A,B}, the posterior beliefs are respectively given by

λ̃t(A) =
λγ

λγ + (1− λ)(1− γ)
and λ̃t(B) =

λ(1− γ)

λ(1− γ) + (1− λ)γ
.

Given that γ > 1
2
, we can easily see that λ̃t(B) < λ < λ̃t(A).

Then, before receiving the additional signal st about a payoff xt, each informed investor

believes that a payoff xt will be drawn from the distribution F (x; λ̃t) that is given by

F (x; λ̃t) = λ̃tΦ

(
x− µA

x

σA
x

)
+ (1− λ̃t)Φ

(
x− µB

x

σB
x

)
,

which is the same as the expression in (11) except that the prior λ is replaced by the posterior

beliefs λ̃t. Accordingly, the demand function of each informed investor, that is, qIt , is still

given by (12) with the distribution function F in (13) being replaced by F (x; λ̃t).

Uninformed investors behave the same way as in the canonical model without rational

expectations, as mentioned multiple times before. For clarification, in this model, uninformed

investors do not need to collect the data on the past realized states even if the past states

become publicly observable ex post, because the current state does not directly affect the

utility of investors.

Moreover, note that we are not able to calculate the true rational expectations equi-
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Figure 7: This figure depicts the results of the model with separate signals. The blue curve plots
the long-run limit of the investment policy functions of uninformed investors. The orange curve
plots the investment policy function of uninformed investors in the previous economy with a single
signal. The left and right boundaries are chosen to ensure that 99% of realized data points lie
within this interval. The parameter values are (µA

x , σ
A
x ) = (1.2, 0.2), (µB

x , σ
B
x ) = (0.9, 0.3), λ = 0.6,

σs = 0.2, µz = 0, σz = 5, λ = 0.9, η = 5, mI = 1, and mU = 2. The update interval is set to
N = 20000. The batch size is set to 2000. The number of epochs is set to 20. The learning rate is
initially set to 10−4 and then is reduced by a factor 0.99 every 50 epochs. The number of hidden
layers is set to 5. The number of nodes of each hidden layer is set to 100. The activation function
is set to the ReLU function. The simulation ends when the moving average of ∆θ

l , which measures
the changes in the policy network weights, over 20 consecutive update intervals falls below 10−5.

librium in this model. Thus, we cannot use the error between the true solution and our

model outcome as a stopping criterion for our simulation. Instead, following conventions

in machine learning, we calculate the difference between the weights associated with the

investment policy function of uninformed investors across two consecutive update intervals:

∆θ
l =

∑
i

|θilN − θi(l−1)N |.

We then stop the simulation when the moving average of this difference falls below a certain

level. A similar stopping rule is used in Calvano et al. (2020) and Dou et al. (2024).

Figure 7 shows the results of this model under an appropriate parameter choice. Our

numerical experiment first shows that the model outcomes converge to some limit under

these parameter values, where we have used the changes in the policy network weights over

time as the criterion for convergence as mentioned above. In the figure, the blue curve plots

the long-run limit of the investment policy functions of uninformed investors, which can be
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regarded as an approximate solution to the true investment policy function that must arise

in the rational expectations equilibrium. The orange curve in the same figure plots the true

investment policy function arising in the rational expectations equilibrium in the previous

model with a single signal.

The demand functions of uninformed investors in these two different economies exhibit

several interesting features. First, when the price is either low (say, around 0.4) or high (say,

around 1.4), these two demand functions are nearly indistinguishable from each other. We

have already discussed the underlying intuition behind this result. That is, when the price

is high (low), uninformed investors firmly believe that the current state is highly likely to

be good (bad) state. As such, in these regions, the additional signal received by informed

investors would be less informative and therefore, the demand function arising in this economy

should be almost the same as the demand function obtained in the economy with a single

signal.

However, when the price is at an intermediate level, the demand function arising in

the economy with separate signals is lower that that obtained in the economy with a single

signal. To understand these results, note that when prices fall in an intermediate region, the

additional signal received by informed investors becomes more valuable for these investors.

This result leads to a higher degree of information asymmetry between informed investors

and uninformed investors. As a result, the negative information effect of a price drop is

enlarged, driving uninformed investors to reduce their demand for the asset, compared to the

case where informed investors have access to only a single signal.

3.2.3 Model with Financial Constraints

In this section, we introduce financial constraints such as borrowing and short-sale constraints

into the model of Grossman and Stiglitz (1980). We then attempt to approximate the solution

to this extension by calculating the long-run limit of our model outcomes without rational

expectations.

In the literature, Yuan (2005) extends the model of Grossman and Stiglitz (1980) by

incorporating borrowing constraints and solves the extended model numerically. However,

this model specifies borrowing constraints in a reduced form which may not encompass a wide
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range of environments. In our model, we will introduce borrowing and short-sale constraints

in their most natural forms. Also, Yuan (2005) assumes that uninformed investors have a

mean-variance preference, although the expected utility of these investors is not equivalently

reduced to a mean-variance preference, given that the linear relationship between prices and

payoffs no longer holds in the presence of borrowing constraints. In our model, we do not

adopt this simplifying specification regarding utility functions. In fact, this approach does

not fit the reinforcement learning algorithm because this algorithm uses the realized utilities

rather than the expected utility to update a policy function after observing realized data.

To begin, we assume that all investors are endowed with an initial wealth of w̄ at

the beginning of each time, where w̄ is a positive constant. Also, following Yuan (2005),

we assume that only a subset of informed investors are subject to financial constraints,

say, borrowing and short-sale constraints. The remaining informed investors and all other

uninformed investors do not face the financial constraints. The reason why uninformed

investors are not assumed to be financially constrained is that, as pointed out by Yuan

(2005), the main interest of this extension lies in examining how the presence of financial

constraints affects the inference problem of uninformed investors. As such, imposing financial

constraints on uninformed investors would unnecessarily make the model more complicated

without providing additional insights. In other words, we can compare the demand function

of uninformed investors in an economy to financial constraints with that in the original

economy of Grossman and Stiglitz (1980) more effectively by assuming only some informed

investors are financially constrained.

Letmc
I denote the measure of informed investors who are subject to borrowing and short-

sale constraints and let muc
I denote the measure of informed investors who are not subject

to any financial constraints. We continue to denote the measure of uninformed investors by

mU as in the previous sections.

Regarding financial constraints, we assume that demand of each financially informed

investor, denoted by qI,ct , must satisfy the following condition: −ξ ≤ qI,ct ≤ w̄
pt
, if pt > 0

w̄
pt
≤ qI,ct ≤ ξ, if pt < 0

(16)
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Figure 8: This figure depicts the results of the model with financial constraints. The left panel
describes the case with only borrowing constraints. The middle panel describes the case with only
short-sale constraints. The right panel plots the case with both borrowing and short-sale constraints.
In each panel, the blue curve plots the demand function of uninformed investors in this extension,
while the orange curve plots the demand function of uninformed investors in the canonical model
without financial constraints. The parameter values chosen for the third case are µx = 1, σx = 0.2,
σs = 0.1, µz = 3, σz = 2, η = 5, w̄ = 2.3, ξ = 2.1, mu

I = 0.7, mc
I = 0.3, and mU = 2. For the first

case, ξ is set to∞. For the second case, w̄ is set to∞. In all three cases, the update interval length
is set to N = 3000. The batch size is set to 64. The number of epochs is set to 10. The learning
rate is initially set to 10−4 and then is reduced by a factor 0.99 every 30 epochs. The number of
hidden layers is set to 5. The number of nodes of each hidden layer is set to 100. The activation
function is set to the ReLu function.

for some constant ξ ≥ 0. In the case of pt > 0, the left inequality indicates a short-sale

constraint and the right inequality represents a borrowing constraint. That is, financially

constrained investors cannot make a negative position in the risky asset, which exceeds a

certain limit, and cannot invest more than their initial wealth in the risky asset. In the

case of pt < 0, we can formally specify the borrowing and short-sale constraints in the above

form. But since this case is unrealistic, when we simulate our model, we will choose parameter

values to ensure that the second case would rarely occur. Also, note that the case of ξ =∞

corresponds to the case with only borrowing constraints and the case of w̄ = ∞ indicates

the case with only short-sale constraints. When we present the results later, we will consider

these two special cases first to better illustrate the results.

The demand of each financially unconstrained informed investor, denoted by qI,uct , is

still given by the formula in (1), which depends on both the price pt and private signal st.
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Then, the demand of each financially constrained informed investor is simply given by


qI,ct = max

{
min

{
qI,uct , w̄

pt

}
,−ξ

}
, if pt > 0

qI,ct = min
{
max

{
qI,uct , w̄

pt

}
, ξ
}
, if pt < 0,

(17)

due to the constraints in (16). Next, regarding the decisions of uninformed investors, we need

not modify their learning procedure, as expected.

Figure 8 presents the results of this model with borrowing and short-sale constraints.

Specifically, the left two panels presents the results in case with only borrowing constraints.

The top-left panel first shows that the model outcomes converge to some limit in the long

run, which can be regarded as the approximate solution for the true rational expectations

equilibrium of this model.

In the top-left panel, the orange line indicates the demand function of uninformed in-

vestors in the canonical model of Grossman and Stiglitz (1980) and the blue curve plots the

long-run limit of the demand function of uninformed investors in our model. The result shows

that (i) when the price is low, the demand by uninformed investors is higher in the economy

with borrowing constraints than that in the canonical model and (ii) when the price is high,

the two demand functions are close to each other.

To understand this result intuitively, note first that borrowing constraints tend to be

binding when the price is low and therefore, assets in the economy with borrowing constraints

would be underpriced when prices are low, compared to the canonical economy. As a result,

uninformed investors in the economy with borrowing constraints would infer the quality of

the asset to be higher than that inferred by uninformed investors, who observe the same

level of a price, in the economy without borrowing constraints. Therefore, the demand by

uninformed investors in the economy with borrowing constraints should be higher than than

in the economy without borrowing constraints. Meanwhile, when prices are high, the demand

functions by uninformed investors in the two different economies should be close to each other.

The middle two panels present the results for the case with only short-sale constraints.

We can understand these results in the opposite way to the case with only borrowing con-

straints. That is, since short-sale constraints tend to binding when prices are high, assets

35



in the economy with short-sale constraints would be overpriced, compared to the economy

without short-sale constraints. Hence, for the similar reason mentioned above, when prices

are high, the demand by uninformed investors in the economy with short-sale constraints

should be lower than that in the economy without short-sale constraints. When prices are

low, the uninformed investors in the two different economies make almost the same decision.

The right two panels present the results in the economy with both borrowing and short-

sale constraints. In this case, the outcomes that are observed in the above two cases, in which

we have examined the effects of borrowing constraints and short-sale constraints separately,

occur at the same time. That is, as shown in the top-right panel, the demand function of

uninformed investors facing both the constraints cross the demand function arising in the

economy with no financial constraints from the above to below. This result is consistent with

our intuition for the reasons mentioned above. To the best of our knowledge, this paper is

the first to provide an approximate solution to the extension of Grossman and Stiglitz (1980)

that incorporates borrowing and short-sale constraints in their most natural forms.

4 Conclusions

In this paper, we investigate whether financial markets eventually achieve market efficiency,

even if investors have no prior knowledge of the economic environment. To explore this

issue, we assume that uninformed investors use a reinforcement learning algorithm. Using

this framework, we show that our model outcomes tend to converge to the true rational

expectations equilibriums in the settings considered by Grossman and Stiglitz (1980) and

Breon-Drish (2015), both of which are analytically tractable. The fact that financial markets

eventually become informationally efficient even in the absence of the rational expectations

assumption has important implications for practitioners. That is, this result means that

even if those practitioners in the investment industry design their investment strategies with-

out having the perfect knowledge of the economic environment, they will eventually find an

optimal investment strategy, especially when those investors use a reinforcement learning

algorithm, which is a relatively new technology invented in the field of machine learning. We

then apply our approach to more general settings that are not analytically tractable. For
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these models, our approach provides credible approximate solutions to the true rational ex-

pectations equilibrium by calculating the long-run limit of our model. Our work contributes

to the growing intersection of finance and machine learning, illustrating how adaptive algo-

rithms can help investors refine their strategies in uncertain environments. This framework

holds promise for exploring diverse, complex financial models and deepening insights into

market behavior when traditional approaches are not feasible.

A Appendix

A.1 Omitted Solutions for Section 2.1

The solutions for the coefficients in relationship (2) are given by

A =
mIτs +mUτsκ

mI(τx + τs) +mU (τx + τsκ)
, B =

ρ (mIτs +mUτsκ)

mI(τx + τs) +mU

(
τx +

τsτz
τz+ρ2τs

) ,

C =
(mI +mU)τxµx − ηµz

mI(τx + τs) +mU (τx + τsκ)
, (18)

where ρ = − η
mIτs

and κ = τz
τz+ρ2τs

as stated before.
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