Forecasting Realized Volatility of the Oil Future Prices via Machine Learning

2024.11.29.

Myung Jun Kim

POSTECH IME

Joint Work with Taeyoon Kim, Byung-June Kim, and Bong-Gyu Jang

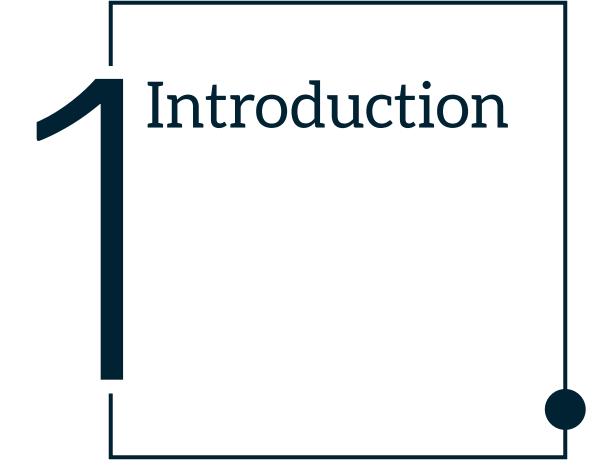
Prepared for 2024년 한국금융공학회 추계학술대회

Contents

- Abstract
- Introduction
- Data
- Forecasting Models
- Empirical Analysis
- Conclusion

Abstract

- This paper explores the potential use of machine learning models in crude oil realized volatility forecasting through a variety of empirical analyses and robustness checks
- Although the conventional Heterogeneous Autoregressive (HAR) model is widely accepted, the machine learning models with the HAR factors can significantly improve its forecasting performance
- We also found that macroeconomic variables such as supply factors, implied volatility indices and uncertainty factors can be useful in forecasting oil volatility



1. Introduction

Introduction

- COVID-19 has created a big lurch in the commodity market
 - Stumbling demand pushes oil future prices down to even the negative territory, -\$36.98, in May 2020
- Even before the global impact of COVID-19, oil price uncertainty has steadily increased over recent decades, which can be a significant threat to the global economy
- In addition to economic decision-making, *Volatility* is one of the key variables for trading strategies, asset allocation, and risk management

1. Introduction

Introduction

- This paper explores the possibility of the potential usage of machine learning models in the field of volatility forecasting
 - Comparison of various forecasting models with a rich set of data and various forecasting horizons guide us to the fact that a combination of conventional models and ML techniques can improve the forecasting performance in out-of-sample
- We show that the ML models with factors in the HAR model as input variables have the potential to enhance the out-of-sample forecasting performance with one-week, bi-week, and month ahead horizon
- We examine the out-of-sample forecasting performance of ten different models as well as their robustness with five different types of performance metrics
- We consider the period from 2002.04. to 2024.04. to include the Great Recession and COVID-19
- In addition, we construct a rich set of data including uncertainty indices, following Miao et al. (2017), Wei et al. (2017), and Ma et al. (2018)

2. Data

Data: Realized Volatility

• We construct the realized volatility of oil future contracts on the WTI crude oil as follows:

•
$$RV_t = \sqrt{\sum_{j=1}^{N_t} r_{t,j}^2}$$
, for $r_{t,j} = 100 \times \log\left(\frac{p_{t,j}}{p_{t,j-1}}\right)$.

- N_t : # of business days in the *t*-th week/bi-week/month
- $p_{t,j}$: Daily WTI future prices on *j*-th business day of the *t*-th week/bi-week/month

• 6 Categories

Data: Explanatory Variables

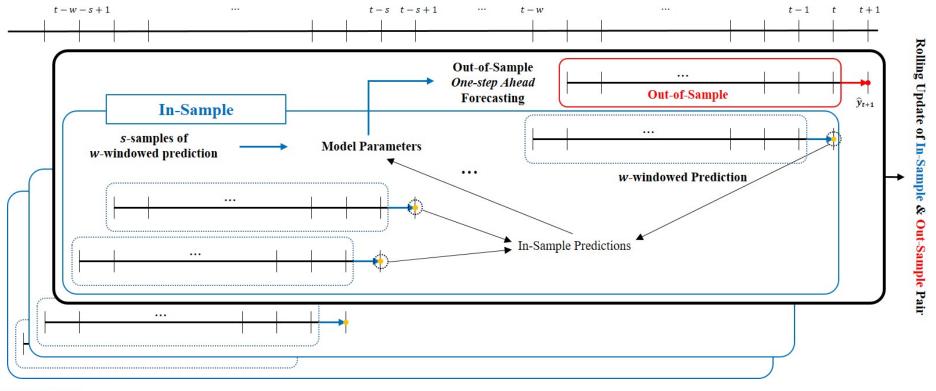
('stagarieg	Factor Group	Individual Variable	Code	Prequency	Source
Categories		WTI (West Texas Intermediate) future prices	P1	Daily	Energy Information Administration
р ·	Prices	WTI spot prices Brent oil spot prices	P1 P2	Daily Daily	Energy Information Administration Energy Information Administration
Prices		NCL (Natural Cas Liquids) future prices	P3	Datly	Energy Information Administration
		NGL spot prices	P4	Daily	Energy Information Administration
Supply Factors		Clobal crude oil production	Sı	Monshly	JODI-Oil Database
Sappi) i accord	Supply	Clobal crude oil stock Clobal crude oil export	S2 S3	Monshly Monshly	JODI-Oil Database JODI-Oil Database
Demand Factors	Factors	Total OPEC production capacity	S4	Monshly	Energy Information Administration
Demanu I actors		Capacity utilization rate	S5	Weekly	Energy Information Administration
Financial Factors		Clobal crude oil import	Dı	Monshly	JODI-Oil Database
· I IIIaIICIAI I ACIUI S	Demand	Liquid fuels consumption in World PPI in China	D2 D3	Monshly Monshly	Energy Information Administration Federal Reserve Bank of St. Louis Economic Database
	Factors	PPI in US	D4	Monshly	Poderal Reserve Bank of St. Louis Economic Database
Implied Volatility Indices		PPI in EU	D5	Monthly	Federal Reserve Bank of St. Louis Economic Database
		SteP 500 Adjusted Close	F1	Daily	Yahoo Finance
Uncertainty Factors		Japan / US Foreign Exchange Rase	F2	Daily	Federal Reserve Bank of St. Louis Economic Database
	Financial Factors	US / Euro Foreign Exchange Rase US / UK Foreign Exchange Rase	F3 F4	Daily Daily	Federal Reserve Bank of St. Louis Economic Database Federal Reserve Bank of St. Louis Economic Database
		China / US Foreign Exchange Rate	F5	Daily	Foderal Reserve Bank of St. Louis Economic Database
		Federal Funds Rate	F6	Monshly	Federal Reserve Bank of St. Louis Economic Database
		MSCI World Standard (Large+Mid Cap)	F7	Monshly	MSCI
		CHOE Volatility Index	V 1	Daily	Yahoo Finance
	Implied Volatility Indices	CBOE Crude Oil Volatility Index	V2	Daily	Yahoo Finance
		CBOE DJIA Volatility Index CBOE Cold Volatility Index	VS V4	Daily Daily	Yahoo Finance Yahoo Finance
				Daily	TALLO PILALLA
		Clobal Economic Policy Uncertainty (current) Clobal Economic Policy Uncertainty (ppp)	U1 U2	Monthly Monthly	Davis (2016), https://www.policyuncertainty.com
		Daily Infectious Disease Equity Market Volatility Tracker	US	Daily	Davis (2016), https://www.policyuncertainty.com Haker et al. (2019) and Haker et al. (2020) https://www.policyuncertainty.com
		US Economic Policy Uncertainty in Economic Policy Uncertainty	U4	Monshly	Baker es al. (2016), https://www.policyuncertainty.com
		US Economic Policy Uncertainty in Monetary Policy	U5	Monshly	Baker es al. (2016), https://www.policyuncertainty.com
		US Economic Policy Uncertainty in Fiscal Policy (Taxes or spending) US Economic Policy Uncertainty in Taxes	U6 U7	Monshly Monshly	Baker et al. (2016), https://www.policyuncertainty.com Baker et al. (2016), https://www.policyuncertainty.com
	Uncertainty Factors	US Economic Policy Uncertainty in Taxes	Us	Monthly	Baker et al. (2016), https://www.poiicyuncertainty.com Baker et al. (2016), https://www.policyuncertainty.com
		US Economic Policy Uncertainty in Healthcare	Us	Monshly	Baker es al. (2016), https://www.policyuncertainty.com
	Distance &	US Economic Policy Uncertainty in National Socurity	U10	Monshly	Baker et al. (2016), https://www.policyuncertainty.com
		US Economic Policy Uncertainty in Entitlement Programs US Economic Policy Uncertainty in Regulation	U11 U12	Monshly Monshly	Baker et al. (2016), https://www.policyuncertainty.com Baker et al. (2016), https://www.policyuncertainty.com
		US Economic Policy Uncertainty in Financial Regulation	U13	Monshly	Baker es al. (2016), https://www.policyuncertainty.com
		US Economic Policy Uncertainty in Trade Policy	U14	Monshly	Baker et al. (2016), https://www.policyuncertainty.com
		US Economic Policy Uncertainty in Sovereign Debt and currency crises World Uncertainty Index	U15	Monthly Quarterly	Baker es al. (2016), https://www.policyuncertainty.com
		World Uncertainty Index World Pandomic Uncertainty Index	U16 U17	Quarterly	Ahir et al. (2018), https://worlduncertaintyindex.com/ Ahir et al. (2018), https://worlduncertaintyindex.com/

Table 1. There are six groups of data - prices, supply factors, demand factors, financial factors, implied volatility indices, and uncertainty factors. The dependent variable is WTI future price, and the rest of the data are explanatory variables used in the models.

FIRM

Cross Validation

- In the time-series model, preventing the use of future information is a pertinent first step
- Similar to Gu et al. (2020), we construct the out-of-sample data and design crossvalidation as shown below



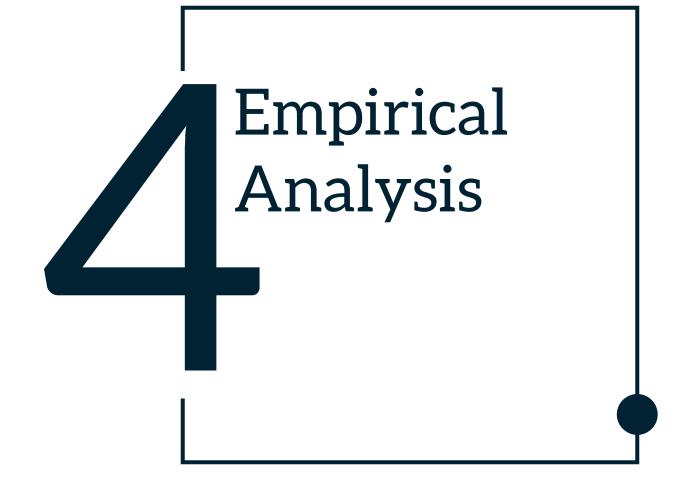
- Heterogeneous Autoregressive with Exogenous Variables (HAR-X)
 - Contains two explanatory variables which represent short-term and long-term memories
 - $\left\{ \begin{aligned} \widehat{RV_{t+1}^{W}} &= c_{W} + \beta_{W,w}RV_{t}^{W} + \beta_{W,m}RV_{t-4:t}^{W} + \beta_{W,q}RV_{t-13:t}^{W} + \sum_{k=0}^{w-1}\sum_{m=1}^{n}\eta_{W,m,t-k}x_{m,t-k} + \epsilon_{W,t+1}, \\ \widehat{RV_{t+1}^{2W}} &= c_{2W} + \beta_{2W,w}RV_{t}^{2W} + \beta_{2W,q}RV_{t-6:t}^{2W} + \beta_{2W,y}RV_{t-26:t}^{2W} + \sum_{k=0}^{w-1}\sum_{m=1}^{n}\eta_{2W,m,t-k}x_{m,t-k} + \epsilon_{2W,t+1}, \\ \widehat{RV_{t+1}^{M}} &= c_{M} + \beta_{M,w}RV_{t}^{M} + \beta_{M,q}RV_{t-3:t}^{M} + \beta_{M,y}RV_{t-12:t}^{M} + \sum_{k=0}^{w-1}\sum_{m=1}^{n}\eta_{M,m,t-k}x_{m,t-k} + \epsilon_{M,t+1}, \end{aligned} \right.$
- Time-Varying Parameter Heterogeneous Autoregressive (TVP-HAR)
 - Extension of HAR, considering the parameter changes over time
 - Commonly used to enhance the power of HAR

- Least Absolute Shrinkage and Selection Operator (LASSO)
 - Reduces the risk of overfitting by adding a penalty term to the cost function
 - $\min_{\phi,\eta} \left[\left(RV_{t+1} \left(\sum_{i=0}^{w-1} \phi_i RV_{t-i} + \sum_{k=0}^{w-1} \left\{ \sum_{m=1}^n \eta_{m,t-k} x_{m,t-k} \right) \right)^2 \right] \right], \text{ subject to } \sum |\phi| + \sum |\eta| < c \text{(constant)}$
- Elastic Net
 - Combinatorial extension of the Ridge and the LASSO
 - Considers both L1 and L2 norms

• Decision Tree Regression (DTR)

- Builds models in the form of a tree structure by dividing the data set into smaller subsets while gradually elaborating related decision trees
- Random Forest Regression (RFR)
 - Learning algorithm that uses an ensemble learning method for several decision trees
 - Generates multiple decision trees and averages them to reduce noise and the risk of overfitting.
- Gradient Boosting Regression (GBR)
 - Produces a model from an ensemble of weak predictive models (trees)
 - Updates its predictor by calculating the negative gradient of the loss criteria, then regress a tree to those residuals

- Artificial Neural Network (ANN)
 - Computational model inspired by the human brain
 - Designed to recognize the patterns and make decisions
 - It consists of interconnected layers of nodes (neurons), including an input layer, one or more hidden layers, and an output layer
- Recurrent Neural Network (RNN)
 - Specific type of ANN, designed to process sequential data
 - Have connections from directed cycles, allowing them to retain information from earlier input sequences



Overall Performance

		R ² _{oos} With Uncertainty Without Uncertainty					
Forecasting Model	Number of Feature Selection	N	2W	w	M	2W	W
	-	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
HAR		(0.000E+00)	(0.000E+00)	(0.000E+00)	(0.000E+00)	(0.000E+00)	(0.000E+00
	-	-0.0203	0.2508	0.2392*	-0.0203	0.2508	0.2392*
TVP-HAR		(2.079E-13)	(2.648E-19)	(1.421E-19)	(2.079E-13)	(2.648E-19)	(1.421E-19)
	0	-0.0203	0.2508	0.2392*	-0.0203	0.2508	0.2392*
		(2.079E-13)	(2.648E-19)	(1.421E-19)	(2.079E-13)	(2.648E-19)	(1.421E-19
HAR-X	10	0.0958	0.3445	0.2528*	-0.2564	0.2779	0.1377*
		(4.276E-11)	(8.056E-16)	(1.967E-17)	(2.145E-07)	(1.239E-07)	(3.584E-14
	20	0.1260	0.3085	0.2505*	0.0739	0.2377	0.0311
		(4.334E-12)	(2.286E-15)	(5.876E-17)	(1.379E-15)	(3.635E-17)	(4.732E-15
	all	0.3708*	0.4154^*	0.3236*	0.0125	0.2106	-1.2143
		(4.671E-11)	(3.443E-13)	(3.356E-12)	(6.184E-17)	(1.366E-16)	(6.322E-06
LASSO	0	0.0599	0.3018	0.2756^*	0.0599	0.3018*	0.2756^{*}
		(5.319E-15)	(4.384E-20)	(1.552E-16)	(5.319E-15)	(4.384E-20)	(1.552E-16
	10	0.1964	0.3622*	0.2766*	0.0452	0.2335	0.2605^{*}
		(1.983E-14)	(1.719E-19)	(1.717E-16)	(1.151E-16)	(2.426E-15)	(2.258E-17
111000	20	0.2110	0.3623*	0.2766*	0.0550	0.2458	0.2603*
		(1.528E-14)	(1.723E-19)	(1.718E-16)	(6.858E-17)	(3.340E-15)	(2.308E-17
	all	0.4007	0.4512*	0.3547*	0.2554^*	0.3980*	0.2439*
		(2.232E-17)	(8.323E-14)	(5.456E-14)	(7.102E-17)	(5.951E-16)	(1.809E-14
ElasticNet	0	0.0613	0.2985	0.2698*	0.0613	0.2985*	0.2698*
	10	(6.682E-15)	(3.345E-20)	(1.053E-17)	(6.682E-15)	(3.345E-20)	(1.053E-17
	10	0.2137	0.3849*	0.2969*	0.1537*	0.3245*	0.2714*
	22	(2.232E-14)	(4.921E-19)	(2.775E-17)	(3.724E-15)	(3.286E-14)	(3.825E-18
	20	0.2237	0.3807*	0.2971*	0.2023*	0.3319*	0.2726*
		(2.426E-14)	(3.516E-19)	(3.317E-17)	(1.340E-20)	(1.301E-20)	(5.200E-18
	all	0.4043*	0.4397*	0.3533*	0.2396*	0.3884*	0.2007*
	0	(3.434E-17) 0.0513	(3.443E-14) -0.0220	(5.409E-14) -0.2066	(6.246E-17) 0.0240	(8.830E-17) -0.1064	(1.019E-13 -0.1085
	0						
DTR	10	(1.209E-12) 0.3294*	(7.737E-08) 0.3065	(1.258E-17) -0.2111	(2.446E-12) 0.2264*	(2.973E-08) 0.0022	(7.020E-16 -0.2102
	10	(4.235E-14)	(3.638E-12)	(7.734E-15)	(7.963E-16)	(4.163E-15)	(1.461E-19
	20	0.3452*	0.2293	-0.2178	0.2755*	-0.0087	0.0697
	20	(2.868E-15)	(5.137E-13)	(4.559E-18)	(3.774E-14)	(1.436E-13)	(1.118E-12
	all	0.3308*	0.1281	-0.2805	0.0503	0.1752	-0.0473
	au	(1.535E-15)	(1.858E-11)	(7.418E-19)	(5.726E-08)	(2.422E-18)	(3.920E-13
	0	0.2827*	0.3737*	0.2297	0.2823*	0.3720*	0.2428*
		(1.293E-12)	(2.818E-16)	(1.783E-17)	(1.240E-12)	(2.061E-16)	(3.330E-17
RFR	10	0.4623*	0.4884*	0.3434*	0.4228*	0.4060*	0.2760*
		(3.638E-16)	(1.350E-15)	(3.149E-16)	(1.145E-13)	(2.940E-18)	(2.131E-15
	20	0.4909*	0.4678*	0.3743*	0.4216*	0.4604*	0.3352*
		(1.028E-15)	(2.964E-17)	(2.684E-17)	(1.606E-13)	(3.747E-17)	(2.574E-16
	all	0.4843*	0.4668*	0.3751*	0.4175*	0.4470*	0.3328*
					(0.4.000 4.0		

	0	0.2160	0.3269	0.2092	0.2296*	0.3205^{*}	0.2233*
		(5.184E-13)	(3.493E-17)	(6.703E-16)	(6.920E-13)	(2.413E-17)	(3.080E-16)
	10	0.4292*	0.4891*	0.3221*	0.3102*	0.3305*	0.0601
615 B		(1.710E-15)	(1.786E-13)	(1.266E-15)	(1.699E-06)	(1.026E-16)	(2.916E-19)
GBR	20	0.4783*	0.4644*	0.3601*	0.3382*	0.3751*	0.2670*
		(2.345E-15)	(1.528E-16)	(3.625E-16)	(2.420E-16)	(4.168E-18)	(2.752E-19)
	all	0.4641*	0.4709*	0.3591*	0.3575*	0.3919*	0.2863*
		(1.117E-15)	(1.059E-16)	(1.366E-16)	(3.946E-17)	(8.140E-19)	(2.269E-17)
	0	-0.0483	0.2008	0.2090	-0.0554	0.2214	0.1738*
		(1.238E-13)	(8.166E-20)	(6.319E-18)	(4.572E-14)	(1.274E-19)	(4.084E-18)
	10	0.2757*	0.4146*	0.3610*	0.1210	0.4633*	0.2837*
ANN		(9.829E-11)	(5.968E-13)	(3.832E-13)	(4.540E-14)	(1.464E-13)	(8.791E-13)
AININ	20	0.2485	0.3708*	0.2801*	0.2626*	0.5103*	0.0482
		(2.381E-12)	(2.239E-15)	(4.347E-14)	(1.589E-13)	(1.832E-12)	(4.429E-13)
	all	0.2923*	0.3285	0.2618*	-2.2483	-0.0852	-0.7148
		(5.360E-12)	(4.946E-16)	(1.763E-13)	(2.300E-18)	(3.332E-14)	(1.649E-11)
	0	0.4398*	0.3868*	0.3121*	0.4372*	0.3878*	0.3132*
		(5.641E-10)	(2.328E-15)	(8.896E-15)	(6.683E-10)	(8.813E-16)	(1.264E-14)
	10	0.4711*	0.4777*	0.3956*	0.4800*	0.4696*	0.4070*
RNN		(1.647E-11)	(1.101E-13)	(7.267E-14)	(5.836E-11)	(1.699E-12)	(6.483E-15)
DUNIN	20	0.4906*	0.4549*	0.3841*	0.4803*	0.4457*	0.3488*
		(4.541E-10)	(3.328E-15)	(1.998E-15)	(3.066E-10)	(2.522E-07)	(3.794E-14)
	all	0.4813*	0.4316*	0.3347* ⁽	0.4742*	0.4135*	0.3280*
		(6.191E-10)	(2.055E-13)	(4.252E-15)	(8.149E-10)	(5.288E-14)	(4.572E-15)

Table 2. Forecasting Performance Compared to the Benchmark HAR. \hat{R}^2_{oos} is the performance measurement compared to the benchmark HAR. For each model and each forecasting horizon, bold numbers are the best performance measurements with feature selection and data set. For each time horizon, models that pass the MCS test with a significant level of 0.05 have an asterisk with each performance measure. The numbers in parentheses indicate the *p*-values of residual stationarity.

Overall Performance

- HAR-X and TVP-HAR demonstrate a less impressive performance compared to the HAR
- Linear or simple models demonstrate inconsistent performance
 - Superior performance when forecasting past periods
- # of feature selection plays important role
 - Linear or Simple: Better with large number
 - Nonlinear: Too much is as bad as too little
- Nonlinear ML models with ensemble shows great performance

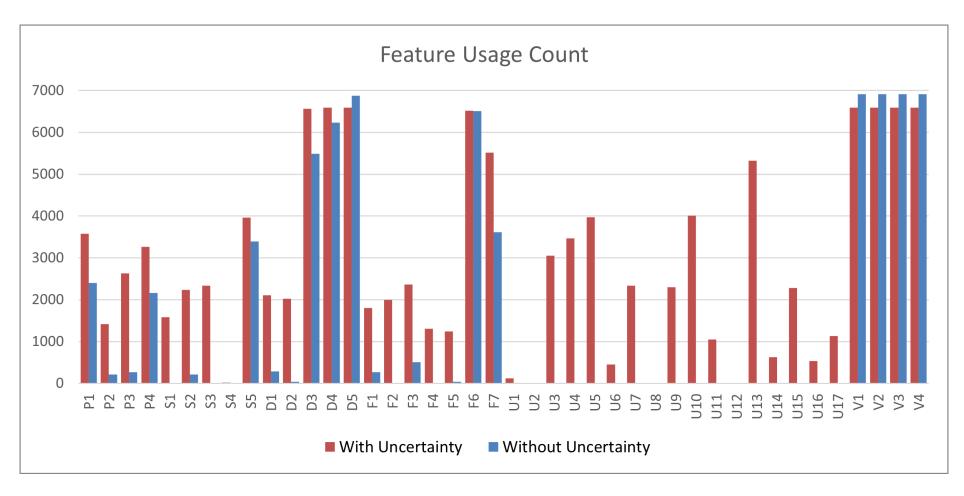
- Forecasting Horizon
 - The longer the forecast horizon, the better the performance
 - However, BM model decreases as the forecast horizon increases
 - Short-term and long-term variables of HAR do not fully reflect the momentum of the volatility
 - RFR and RNN models tend to make robust predictions over the period

- Robustness to sub-period
 - LASSO, Elastic Net: Great performance for longer sub-period
 - However, the ranking of the model did not fall in recent period
 - Oil price have been very volatile recently
 - RFR, RNN: Stable even during the COVID-19

• Uncertainty Indices

- Can push the accuracy of models even higher
- Results vary slightly by model
 - Elastic Net, DTR, and RNN: About half of the cases
 - LASSO, RFR, and ANN: Most case
- Models with shorter forecast horizon, the better the use of uncertainty indices
 - Can reduce overfitting and are more influential in dealing with noise in short-term

• Feature Selection



- Highly Selected Features
 - Volatility indices, PPI in CN, US, EU, Federal funds rate, MSCI World Index
 - WTI, NGL Spot prices, Capacity utilization rate
 - US economic policy uncertainty indices (Financial regulation, Monetary policy, National security, economic policy regulation)

• Lowly Selected Features

- OPEC production capacity, Brent oil Spot price, US/UK, CN/UK FX rate
- US economic policy uncertainty indices (Fiscal policy, Government spending, regulation, trade policy), WUI

4. Empirical Analysis

Empirical Results and Potential Explanation

- Selected in the Models with Uncertainty Indices
 - Price features, Global crude oil production, stock and export
 - MSCI World Standard Index
 - Global crude oil import and Liquid fuels consumption

Potential Explanation

- Why the performance orders are different for each forecast horizon?
 - HAR uses only the lagged values, reflecting the autocorrelation
 - Different models are exposed to the different levels of AR effect, therefore the performance orders might change
 - Features selected varies depending on the forecast horizon, suggesting that the nature of forecasting short-term and long-term horizon is distinct

Potential Explanation

- How do some ML models outperform linear model?
 - Assumption of Gaussian distribution seems most restricted to the linear models
 - Fat-tailed data
 - Overfitting
 - Some ML models are in-sample over-fitted
 - Convergence problems
 - Some ML models might not converge well

4. Empirical Analysis

Discussion

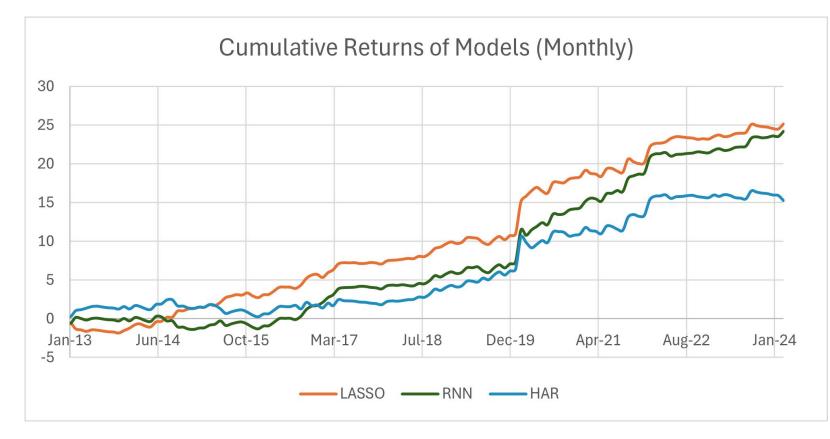
- Volatility Trading Backtest
 - Invest in OVX(ETF)
 - Simple Strategy
 - Long(d = +1) when the prediction is higher than current
 - Short(d = -1) when the prediction is lower than current

•
$$r^i = \sum_{t=1}^{t_{N-s}} \frac{(RV_{t+s} - RV_t)d_t^i}{RV_t}$$

4. Empirical Analysis

Discussion

- Volatility Trading Backtest
- Return: 2,448%, 2,355%, 1,589%



5. Conclusion

Conclusion

- This paper compares and analyzes the predictability of the realized volatility of the crude oil future prices
 - 10 Various forecasting models includes both linear and ML models
 - From 2002 April to 2024 April to include the Great Recession and COVID-19
 - 6 different categories(Prices, Supply, Demand, Financial, Implied Volatility Indices, Uncertainty) of Features
- HAR is popular model however, some ML models outperformed, such as RFR and RNN
- Uncertainty features can enhance the model performances
- Implied volatility indices and PPI, federal funds rate, MSCI World Index were most selected features

