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Abstract

» This paper explores the potential use of machine learning models in crude oil realized volatility
forecasting through a variety of empirical analyses and robustness checks

« Although the conventional Heterogeneous Autoregressive (HAR) model is widely accepted, the
machine learning models with the HAR factors can significantly improve its forecasting
performance

« We also found that macroeconomic variables such as supply factors, implied volatility indices
and uncertainty factors can be useful in forecasting oil volatility
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1. Introduction

Introduction

* COVID-19 has created a big lurch in the commodity market
« Stumbling demand pushes oil future prices down to even the negative territory, -$36.98, in May 2020

« Even before the global impact of COVID-19, oil price uncertainty has steadily increased over
recent decades, which can be a significant threat to the global economy

 In addition to economic decision-making, Volatility is one of the key variables for trading
strategies, asset allocation, and risk management



1. Introduction

Introduction

» This paper explores the possibility of the potential usage of machine learning models in the field
of volatility forecasting
« Comparison of various forecasting models with a rich set of data and various forecasting horizons

gulde us to the fact that a combination of conventional models and ML techniques can improve the
forecasting performance in out-of-sample

« We show that the ML models with factors in the HAR model as input variables have the
potential to enhance the out-of-sample forecasting performance with one-week, bi-week, and
month ahead horizon

« We examine the out-of-sample forecasting performance of ten different models as well as their
robustness with five different types of performance metrics

 We consider the period from 2002.04. to 2024.04. to include the Great Recession and COVID-19
 In addition, we construct a rich set of data including uncertainty indices, following Miao et al.

(2017), Wei et al. (2017), and Ma et al. (2018)






2. Data

Data: Realized Volatility

 We construct the realized volatility of oil future contracts on the WTI crude oil as follows:

* RV, = Z?’ilrtz,j,for ;= 100 X log( ] ),

Pt,j-1

* N;:# of business days in the t-th week/bi-week/month
* p¢ ;- Daily WTI future prices on j-th business day of the t-th week/bi-week/month



2. Data

Data: Explanatory Variables
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Table 1. There are six groups of data - prices, supply factors, demand fan:tn::rs tinancial tactors, implied
volatility indices, and uncertainty factors. The dependent variable is WTI future price, and the rest of the data
are explanatory variables used in the models.
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3. Forecasting Models
Cross Validation

 In the time-series model, preventing the use of future information is a pertinent
first step

 Similar to Gu et al. (2020), we construct the out-of-sample data and design cross-
validation as shown below
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3. Forecasting Models
Forecasting Models

« Heterogeneous Autoregressive with Exogenous Variables (HAR-X)

« Contains two explanatory variables which represent short-term and long-term
memories

W w w w —1
RV.yy = ¢y + BwwRVY" + By mRViZat + Bw o RViZ13.e + Xkco 2om=1 Mwant—kXme—k T €w t+1
. W 2w 2w 2w ~1
VRV:ET = cow + Bow wRVE™ + Bow qRViZ6:t + Bow y RV 56t + Dke0 2im=1 2w me—kXmt—k T €aw t+1

Mo M M M ~1
\ RV.iy = ey + BuwRVe + BugRViZs.t + BuyRViZ10 + Dke0 2am=1 MM mt—kXmt—k T €M t+1s

« Time-Varying Parameter Heterogeneous Autoregressive (TVP-HAR)
« Extension of HAR, considering the parameter changes over time
 Commonly used to enhance the power of HAR

POSsS T
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3. Forecasting Models
Forecasting Models

« Least Absolute Shrinkage and Selection Operator (LASSO)
» Reduces the risk of overfitting by adding a penalty term to the cost function

+ min|(RVes = (M eRVes + TH {Zhet Nme—ikme-r)) }|, subject to Il + Ein| < e(constant)

« Elastic Net

« Combinatorial extension of the Ridge and the LASSO
« Considers both L1 and L2 norms

POSsS T
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3. Forecasting Models
Forecasting Models

« Decision Tree Regression (DTR)

« Builds models in the form of a tree structure by dividing the data set into smaller subsets
while gradually elaborating related decision trees

« Random Forest Regression (RFR)

» Learning algorithm that uses an ensemble learning method for several decision
trees

» Generates multiple decision trees and averages them to reduce noise and the risk of
overfitting.

« Gradient Boosting Regression (GBR)

« Produces a model from an ensemble of weak predictive models (trees)
» Updates its predictor by calculating the negative gradient of the loss criteria, then

regress a tree to those residuals



3. Forecasting Models

Forecasting Models

« Artificial Neural Network (ANN)
« Computational model inspired by the human brain
* Designed to recognize the patterns and make decisions

[t consists of interconnected layers of nodes (neurons), including an input layer, one
or more hidden layers, and an output layer

e Recurrent Neural Network (RNN)

» Specific type of ANN, designed to process sequential data

« Have connections from directed cycles, allowing them to retain information from
earlier Input sequences

POSsS T
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4. Empirical Analysis

Empirical Results an

d Potential Explanation

e Overall Performance

o
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Table 2. Forecasting Performance

Compared to the Benchmark HAR. R2,, is the performance
measurement compared to the benchmark HAR. For each model and each forecasting horizon, bold numbers
are the best performance measurements with feature selection and data set. For each time horizon, models
that pass the MCS test with a significant level of 0.05 have an asterisk with each performance measure. The

numbers in parentheses indicate the p-values of residual stationarity.
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4. Empirical Analysis
Empirical Results and Potential Explanation

» Overall Performance
« HAR-X and TVP-HAR demonstrate a less impressive performance compared to the HAR
» Linear or simple models demonstrate inconsistent performance
» Superlior performance when forecasting past periods
« # of feature selection plays important role
e Linear or Simple: Better with large number
« Nonlinear: Too much 1s as bad as too little

« Nonlinear ML models with ensemble shows great performance




4. Empirical Analysis
Empirical Results and Potential Explanation

» Forecasting Horizon
» The longer the forecast horizon, the better the performance
 However, BM model decreases as the forecast horizon increases

« Short-term and long-term variables of HAR do not fully reflect the momentum of
the volatility

« REFR and RNN models tend to make robust predictions over the period




4. Empirical Analysis
Empirical Results and Potential Explanation

« Robustness to sub-period

« LASSO, Elastic Net: Great performance for longer sub-period
« However, the ranking of the model did not fall in recent period
« Qll price have been very volatile recently

« RFR, RNN: Stable even during the COVID-19




4. Empirical Analysis
Empirical Results and Potential Explanation

e Uncertainty Indices
» Can push the accuracy of models even higher

» Results vary slightly by model
« Elastic Net, DTR, and RNN: About half of the cases
 LASSO, RFR, and ANN: Most case

« Models with shorter forecast horizon, the better the use of uncertainty indices
« Can reduce overfitting and are more influential in dealing with noise in short-term

il



4. Empirical Analysis
Empirical Results and Potential Explanation

» Feature Selection

Feature Usage Count
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4. Empirical Analysis

Empirical Results and Potential Explanation

» Highly Selected Features
« Volatility indices, PPl in CN, US, EU, Federal funds rate, MSCI World Index
 WTI, NGL Spot prices, Capacity utilization rate

« US economic policy uncertainty indices (Financial regulation, Monetary policy,
National security, economic policy regulation)

* Lowly Selected Features

 OPEC production capacity, Brent o1l Spot price, US/UK, CN/UK FX rate

« US economic policy uncertainty indices (Fiscal policy, Government spending,
regulation, trade policy), WUI

POSsS T
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4. Empirical Analysis

Empirical Results and Potential Explanation

« Selected in the Models with Uncertainty Indices

» Price features, Global crude oil production, stock and export
« MSCI World Standard Index
» Global crude o1l import and Liquid fuels consumption




4. Empirical Analysis
Potential Explanation

« Why the performance orders are different for each forecast horizon?
« HAR uses only the lagged values, reflecting the autocorrelation

» Different models are exposed to the different levels of AR effect, therefore the
performance orders might change

» Features selected varies depending on the forecast horizon, suggesting that the
nature of forecasting short-term and long-term horizon is distinct




4. Empirical Analysis
Potential Explanation

« How do some ML models outperform linear model?
« Assumption of Gaussian distribution seems most restricted to the linear models
« Fat-tailed data
« Overfitting
« Some ML models are in-sample over-fitted
» Convergence problems
« Some ML models might not converge well




4. Empirical Analysis

Discussion

« Volatility Trading Backtest
e Invest in OVX(ETF)

o Simple Strategy
 Long(d = +1) when the prediction is higher than current

e Short(d = —1)when the prediction is lower than current
. i _ wines RVes—RVd]
F'= L= RV



4. Empirical Analysis

Discussion

« Volatility Trading Backtest
» Return: 2,448%, 2,355%, 1,589%

Cumulative Returns of Models (Monthly)

30
25
20

15
10

5

0

_éan-ls Jun-14 Oct-15 Mar-17 Jul-18 Dec-19 Apr-21 Aug-22 Jan-24

e | ASSO === RNN == HAR

il



Conclusion




5. Conclusion

Conclusion

« This paper compares and analyzes the predictability of the realized volatility of
the crude oil future prices

» 10 Various forecasting models includes both linear and ML models
 From 2002 April to 2024 Aprll to include the Great Recession and COVID-19

« 6 different categories(Prices, Supply, Demand, Financial, Implied Volatility Indices,
Uncertainty) of Features

« HAR is popular model however, some ML models outperformed, such as RFR and
RNN

« Uncertainty features can enhance the model performances
» Implied volatility indices and PPI, federal funds rate, MSCI World Index were

most selected features
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