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Abstract
• This paper explores the potential use of machine learning models in crude oil realized volatility 

forecasting through a variety of empirical analyses and robustness checks

• Although the conventional Heterogeneous Autoregressive (HAR) model is widely accepted, the 
machine learning models with the HAR factors can significantly improve its forecasting 
performance

• We also found that macroeconomic variables such as supply factors, implied volatility indices 
and uncertainty factors can be useful in forecasting oil volatility
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Introduction
• COVID-19 has created a big lurch in the commodity market

• Stumbling demand pushes oil future prices down to even the negative territory, -$36.98, in May 2020

• Even before the global impact of COVID-19, oil price uncertainty has steadily increased over 
recent decades, which can be a significant threat to the global economy

• In addition to economic decision-making, Volatility is one of the key variables for trading 
strategies, asset allocation, and risk management

1. Introduction



Introduction
• This paper explores the possibility of the potential usage of machine learning models in the field 

of volatility forecasting
• Comparison of various forecasting models with a rich set of data and various forecasting horizons 

guide us to the fact that a combination of conventional models and ML techniques can improve the 
forecasting performance in out-of-sample

• We show that the ML models with factors in the HAR model as input variables have the 
potential to enhance the out-of-sample forecasting performance with one-week, bi-week, and 
month ahead horizon

• We examine the out-of-sample forecasting performance of ten different models as well as their 
robustness with five different types of performance metrics

• We consider the period from 2002.04. to 2024.04. to include the Great Recession and COVID-19

• In addition, we construct a rich set of data including uncertainty indices, following Miao et al. 
(2017), Wei et al. (2017), and Ma et al. (2018)

1. Introduction



Data



Data: Realized Volatility
• We construct the realized volatility of oil future contracts on the WTI crude oil as follows:

• 𝑅𝑅𝑉𝑉𝑡𝑡 = ∑𝑗𝑗=1
𝑁𝑁𝑡𝑡 𝑟𝑟𝑡𝑡,𝑗𝑗

2 , 𝑓𝑓𝑓𝑓𝑓𝑓 𝑟𝑟𝑡𝑡,𝑗𝑗 = 100 × log
𝑝𝑝𝑡𝑡,𝑗𝑗

𝑝𝑝𝑡𝑡,𝑗𝑗−1
,

• 𝑁𝑁𝑡𝑡: # of business days in the 𝑡𝑡-th week/bi-week/month

• 𝑝𝑝𝑡𝑡,𝑗𝑗 : Daily WTI future prices on 𝑗𝑗-th business day of the 𝑡𝑡-th week/bi-week/month
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Data: Explanatory Variables
2. Data

• 6 Categories
• Prices
• Supply Factors
• Demand Factors
• Financial Factors
• Implied Volatility Indices
• Uncertainty Factors
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Cross Validation
• In the time-series model, preventing the use of future information is a pertinent 

first step

• Similar to Gu et al. (2020), we construct the out-of-sample data and design cross-
validation as shown below

3. Forecasting Models



Forecasting Models
• Heterogeneous Autoregressive with Exogenous Variables (HAR-X)

• Contains two explanatory variables which represent short-term and long-term 
memories

•

�𝑅𝑅𝑉𝑉𝑡𝑡+1𝑊𝑊 = 𝑐𝑐𝑊𝑊 + 𝛽𝛽𝑊𝑊,𝑤𝑤𝑅𝑅𝑉𝑉𝑡𝑡𝑊𝑊 + 𝛽𝛽𝑊𝑊,𝑚𝑚𝑅𝑅𝑉𝑉𝑡𝑡−4:𝑡𝑡
𝑊𝑊 + 𝛽𝛽𝑊𝑊,𝑞𝑞𝑅𝑅𝑉𝑉𝑡𝑡−13:𝑡𝑡

𝑊𝑊 +∑𝑘𝑘=0
𝑤𝑤−1∑𝑚𝑚=1

𝑛𝑛 𝜂𝜂𝑊𝑊,𝑚𝑚,𝑡𝑡−𝑘𝑘𝑥𝑥𝑚𝑚,𝑡𝑡−𝑘𝑘 + 𝜖𝜖𝑊𝑊,𝑡𝑡+1,
�𝑅𝑅𝑉𝑉𝑡𝑡+12𝑊𝑊 = 𝑐𝑐2𝑊𝑊 + 𝛽𝛽2𝑊𝑊,𝑤𝑤𝑅𝑅𝑉𝑉𝑡𝑡2𝑊𝑊 + 𝛽𝛽2𝑊𝑊,𝑞𝑞𝑅𝑅𝑉𝑉𝑡𝑡−6:𝑡𝑡

2𝑊𝑊 + 𝛽𝛽2𝑊𝑊,𝑦𝑦𝑅𝑅𝑉𝑉𝑡𝑡−26:𝑡𝑡
2𝑊𝑊 +∑𝑘𝑘=0

𝑤𝑤−1∑𝑚𝑚=1
𝑛𝑛 𝜂𝜂2𝑊𝑊,𝑚𝑚,𝑡𝑡−𝑘𝑘𝑥𝑥𝑚𝑚,𝑡𝑡−𝑘𝑘 + 𝜖𝜖2𝑊𝑊,𝑡𝑡+1,

�𝑅𝑅𝑉𝑉𝑡𝑡+1𝑀𝑀 = 𝑐𝑐𝑀𝑀 + 𝛽𝛽𝑀𝑀,𝑤𝑤𝑅𝑅𝑉𝑉𝑡𝑡𝑀𝑀 + 𝛽𝛽𝑀𝑀,𝑞𝑞𝑅𝑅𝑉𝑉𝑡𝑡−3:𝑡𝑡
𝑀𝑀 + 𝛽𝛽𝑀𝑀,𝑦𝑦𝑅𝑅𝑉𝑉𝑡𝑡−12:𝑡𝑡

𝑀𝑀 +∑𝑘𝑘=0
𝑤𝑤−1∑𝑚𝑚=1

𝑛𝑛 𝜂𝜂𝑀𝑀,𝑚𝑚,𝑡𝑡−𝑘𝑘𝑥𝑥𝑚𝑚,𝑡𝑡−𝑘𝑘 + 𝜖𝜖𝑀𝑀,𝑡𝑡+1,

• Time-Varying Parameter Heterogeneous Autoregressive (TVP-HAR)
• Extension of HAR, considering the parameter changes over time
• Commonly used to enhance the power of HAR
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Forecasting Models
• Least Absolute Shrinkage and Selection Operator (LASSO)

• Reduces the risk of overfitting by adding a penalty term to the cost function
• min

ϕ,η
𝑅𝑅𝑉𝑉𝑡𝑡+1 − ∑𝑖𝑖=0𝑤𝑤−1ϕ𝑖𝑖𝑅𝑅𝑉𝑉𝑡𝑡−𝑖𝑖 + ∑𝑘𝑘=0𝑤𝑤−1 ∑𝑚𝑚=1

𝑛𝑛 η𝑚𝑚,𝑡𝑡−𝑘𝑘𝑥𝑥𝑚𝑚,𝑡𝑡−𝑘𝑘
2 , subject to∑ ϕ + ∑ η < 𝑐𝑐 constant

• Elastic Net
• Combinatorial extension of the Ridge and the LASSO
• Considers both L1 and L2 norms

3. Forecasting Models



Forecasting Models
• Decision Tree Regression (DTR)

• Builds models in the form of a tree structure by dividing the data set into smaller subsets 
while gradually elaborating related decision trees

• Random Forest Regression (RFR)
• Learning algorithm that uses an ensemble learning method for several decision 

trees
• Generates multiple decision trees and averages them to reduce noise and the risk of 

overfitting.

• Gradient Boosting Regression (GBR)
• Produces a model from an ensemble of weak predictive models (trees)
• Updates its predictor by calculating the negative gradient of the loss criteria, then 

regress a tree to those residuals

3. Forecasting Models



Forecasting Models
• Artificial Neural Network (ANN)

• Computational model inspired by the human brain
• Designed to recognize the patterns and make decisions
• It consists of interconnected layers of nodes (neurons), including an input layer, one 

or more hidden layers, and an output layer

• Recurrent Neural Network (RNN)
• Specific type of ANN, designed to process sequential data
• Have connections from directed cycles, allowing them to retain information from 

earlier input sequences

3. Forecasting Models
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Empirical Results and Potential Explanation
• Overall Performance

4. Empirical Analysis



Empirical Results and Potential Explanation
• Overall Performance 

• HAR-X and TVP-HAR demonstrate a less impressive performance compared to the HAR
• Linear or simple models demonstrate inconsistent performance

• Superior performance when forecasting past periods
• # of feature selection plays important role

• Linear or Simple: Better with large number
• Nonlinear: Too much is as bad as too little

• Nonlinear ML models with ensemble shows great performance

4. Empirical Analysis



Empirical Results and Potential Explanation
• Forecasting Horizon

• The longer the forecast horizon, the better the performance
• However, BM model decreases as the forecast horizon increases
• Short-term and long-term variables of HAR do not fully reflect the momentum of 

the volatility
• RFR and RNN models tend to make robust predictions over the period

4. Empirical Analysis



Empirical Results and Potential Explanation
• Robustness to sub-period

• LASSO, Elastic Net: Great performance for longer sub-period
• However, the ranking of the model did not fall in recent period
• Oil price have been very volatile recently

• RFR, RNN: Stable even during the COVID-19

4. Empirical Analysis



Empirical Results and Potential Explanation
• Uncertainty Indices

• Can push the accuracy of models even higher
• Results vary slightly by model

• Elastic Net, DTR, and RNN: About half of the cases
• LASSO, RFR, and ANN: Most case

• Models with shorter forecast horizon, the better the use of uncertainty indices
• Can reduce overfitting and are more influential in dealing with noise in short-term

4. Empirical Analysis



Empirical Results and Potential Explanation
• Feature Selection

4. Empirical Analysis



Empirical Results and Potential Explanation
• Highly Selected Features

• Volatility indices, PPI in CN, US, EU, Federal funds rate, MSCI World Index
• WTI, NGL Spot prices, Capacity utilization rate
• US economic policy uncertainty indices (Financial regulation, Monetary policy, 

National security, economic policy regulation)

• Lowly Selected Features
• OPEC production capacity, Brent oil Spot price, US/UK, CN/UK FX rate
• US economic policy uncertainty indices (Fiscal policy, Government spending, 

regulation, trade policy), WUI

4. Empirical Analysis



Empirical Results and Potential Explanation
• Selected in the Models with Uncertainty Indices

• Price features, Global crude oil production, stock and export
• MSCI World Standard Index
• Global crude oil import and Liquid fuels consumption

4. Empirical Analysis



Potential Explanation
• Why the performance orders are different for each forecast horizon?

• HAR uses only the lagged values, reflecting the autocorrelation
• Different models are exposed to the different levels of AR effect, therefore the 

performance orders might change
• Features selected varies depending on the forecast horizon, suggesting that the 

nature of forecasting short-term and long-term horizon is distinct

4. Empirical Analysis



Potential Explanation
• How do some ML models outperform linear model?

• Assumption of Gaussian distribution seems most restricted to the linear models
• Fat-tailed data

• Overfitting
• Some ML models are in-sample over-fitted

• Convergence problems
• Some ML models might not converge well

4. Empirical Analysis



Discussion
• Volatility Trading Backtest

• Invest in OVX(ETF)
• Simple Strategy

• Long(𝑑𝑑 = +1) when the prediction is higher than current
• Short(𝑑𝑑 = −1) when the prediction is lower than current

• ri = ∑t=1
tN−s RVt+s−RVt dti

RVt

4. Empirical Analysis



Discussion
• Volatility Trading Backtest

• Return: 2,448%, 2,355%, 1,589%

4. Empirical Analysis
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Conclusion
• This paper compares and analyzes the predictability of the realized volatility of 

the crude oil future prices
• 10 Various forecasting models includes both linear and ML models
• From 2002 April to 2024 April to include the Great Recession and COVID-19
• 6 different categories(Prices, Supply, Demand, Financial, Implied Volatility Indices, 

Uncertainty) of Features

• HAR is popular model however, some ML models outperformed, such as RFR and 
RNN

• Uncertainty features can enhance the model performances

• Implied volatility indices and PPI, federal funds rate, MSCI World Index were 
most selected features

5. Conclusion
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