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Abstract 

We evaluate the effectiveness of domain stabilization (DS) in mitigating the impact of truncation 
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of implied moment estimates improve with DS, though the improvement is somewhat weaker 
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informational content of implied moment estimates, thereby improving their explanatory power 

for underlying prices and returns, as well as their predictive and forecasting performance. 
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1. Introduction 

The option-implied risk-neutral density (RND) contains valuable information because it 

captures market participants' collective expectations about the probability distribution of the 

underlying asset's future price. As forward-looking instruments, options incorporate ex ante 

expectations that reflect a range of factors, including current market conditions, investor sentiment, 

and anticipated future volatility and tail risks. Despite its widespread application, a notable 

limitation of the RND lies in its representation as a continuous function, which complicates its 

direct use in empirical analysis. To overcome this challenge, researchers frequently employ the 

moments of the RND as discrete variables to capture the essential characteristics of the distribution. 

These moments offer a parsimonious and interpretable representation of the RND, enabling their 

application in a broad range of empirical studies investigating the informational content of option 

markets and their implications. 

The development of the model-free implied moment estimators by Bakshi, Kapadia, and Madan 

(2003, BKM) has been a key driver behind the widespread use of the moments of the RND as 

variables in empirical research. These estimators facilitate the calculation of the volatility, 

skewness, and kurtosis of the RND without relying on restrictive assumptions about the underlying 

asset price dynamics, ensuring robustness against model misspecifications. By accurately 

capturing fundamental characteristics of the RND, the BKM estimators enable researchers to distill 

its key features into concise and interpretable variables that are well-suited for empirical analysis. 

Consequently, moments derived from BKM estimators have been extensively employed in studies 

examining market expectations, risk premia, and the pricing of higher-order risks, firmly 

establishing their role as indispensable tools in the investigation of option-implied information in 

financial markets. 

The recent study of Lee, Ryu, and Yang (2024a, LRY) proposes a new truncation treatment 

method, termed domain stabilization (DS), to improve the consistency of BKM estimators and 

reduce variation in estimation errors. By stabilizing the degree of truncation over the sample period, 

DS seeks to reduce noise in estimation, thereby enhancing the informational value of implied 

moment estimates. LRY demonstrates that, when applied to S&P 500 index options data, DS 

significantly improves the in-sample predictive accuracy and out-of-sample forecasting 

performance of implied moment estimates for underlying log returns. Moreover, the test results of 

LRY indicate that implied moment estimates processed using DS outperform those obtained with 
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alternative truncation treatment methods in both in-sample and out-of-sample tests. These findings 

highlight the potential of DS as a valuable tool for improving the information content of implied 

moment estimates and underscores the need for further investigation into its broader applications. 

Motivated by these findings, this study extends LRY by evaluating the effectiveness of DS in 

KOSPI 200 index options market. Beyond assessing its performance in a new market, we expand 

the test methodology to evaluate the efficiency of DS from a broader range of perspectives. In 

addition to testing the in-sample and out-of-sample return predictive and forecasting performance, 

we examine the contemporaneous relationship between the underlying price and implied moment 

estimates to determine whether DS enhances the explanatory power of implied moment estimates 

on underlying price. To provide a detailed analysis, we investigate the contemporaneous 

relationship at both the levels and first-order differences, offering deeper insights into the 

effectiveness of DS. 

The empirical findings of this study demonstrate that DS is an effective truncation treatment 

method for the KOSPI 200 index options market, consistent with the results reported by LRY for 

the S&P 500 index options market. Specifically, DS enhances the contemporaneous explanatory 

power of implied moment estimates for the underlying asset, both at the levels and first-order 

differences. Moreover, as shown by LRY, DS improves the in-sample return predictive accuracy 

and out-of-sample forecasting performance of implied moment estimates. While the enhancement 

generally becomes more pronounced as the intensity level of DS increases, it diminishes if DS is 

applied too intensively. The optimal improvement is achieved when the intensity level remains 

between 50 and 75 percent. The in-sample predictive and out-of-sample forecasting abilities of the 

implied moment estimates remain weaker in the KOSPI 200 index options market compared to the 

S&P 500 index options market, even after applying DS. This disparity may be attributed to 

differences in the degree of information asymmetry between the underlying and options markets 

in the two countries. 

The remainder of this paper is organized as follows. Section 2 reviews the theoretical and 

empirical background, and Section 3 details the data sources, filtration criteria, and descriptive 

statistics for the KOSPI 200 options market dataset. Section 4 outlines the methodology for implied 

moment estimation, and Section 5 presents the empirical results. Section 6 concludes with a 

discussion of the findings and their implications. 
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2. Research background 

BKM proposes a model-free implied moment estimation approach, defining the volatility, 

skewness, and kurtosis of the implied RND as functions of the fair values of volatility, cubic, and 

quartic contracts, denoted as 𝑉, 𝑊, anx 𝑋, respectively. These contracts are named based on their 

payoff functions, which correspond to 𝑅2 , 𝑅3 , and 𝑅4 , where 𝑅  represents the underlying 

asset’s holding period log return until maturity. At time 𝑡, BKM’s implied moment estimators for 

maturity 𝜏 are defined as follows: 

VOL(𝑡, 𝜏)     = [𝑒𝑟𝜏𝑉(𝑡, 𝜏) − 𝜇2(𝑡, 𝜏)]1/2, (1) 

SKEW(𝑡, 𝜏) =
𝑒𝑟𝜏𝑊(𝑡,𝜏)−3𝜇(𝑡,𝜏)𝑒𝑟𝜏𝑉(𝑡,𝜏)+2𝜇3(𝑡,𝜏)

[𝑒𝑟𝜏𝑉(𝑡,𝜏)−𝜇2(𝑡,𝜏)]3/2 , (2) 

KURT(𝑡, 𝜏) =
𝑒𝑟𝜏𝑋(𝑡,𝜏)−4𝜇(𝑡,𝜏)𝑒𝑟𝜏𝑊(𝑡,𝜏)+6𝑒𝑟𝜏𝜇2(𝑡,𝜏)𝑉(𝑡,𝜏)−3𝜇4(𝑡,𝜏)

[𝑒𝑟𝜏𝑉(𝑡,𝜏)−𝜇2(𝑡,𝜏)]2 ,  (3) 

where 𝑟 denotes the risk-free rate and 𝜇(𝑡, 𝜏) represents the underlying asset’s expected holding 

period risk-neutral log return. BKM demonstrates that the fair values 𝑉 , 𝑊 , anx 𝑋  can be 

derived from a continuum of OTM option prices as follows: 

𝑉(𝑡, 𝜏) = ∫
2(1−𝑙𝑛[

𝐾

𝑆(𝑡)
])

𝐾2 𝐶(𝑡, 𝜏; 𝐾)𝑑𝐾
∞

𝑆(𝑡)
+ ∫

2(1+𝑙𝑛[
𝑆(𝑡)

𝐾
])

𝐾2 𝑃(𝑡, 𝜏; 𝐾)𝑑𝐾
𝑆(𝑡)

0
, (4) 

𝑊(𝑡, 𝜏) = ∫
6 𝑙𝑛[

𝐾

𝑆(𝑡)
]−3(𝑙𝑛[

𝐾

𝑆(𝑡)
])

2

𝐾2 𝐶(𝑡, 𝜏; 𝐾)𝑑𝐾 − ∫
6 𝑙𝑛[

𝑆(𝑡)

𝐾
]+3(𝑙𝑛[

𝑆(𝑡)

𝐾
])

2

𝐾2 𝑃(𝑡, 𝜏; 𝐾)𝑑𝐾
𝑆(𝑡)

0

∞

𝑆(𝑡)
, (5) 

𝑋(𝑡, 𝜏) = ∫
12(𝑙𝑛[

𝐾

𝑆(𝑡)
])

2
−4(𝑙𝑛[

𝐾

𝑆(𝑡)
])

3

𝐾2 𝐶(𝑡, 𝜏; 𝐾)𝑑𝐾
∞

𝑆(𝑡)
+

∫
12(𝑙𝑛[

𝑆(𝑡)

𝐾
])

2
+4(𝑙𝑛[

𝑆(𝑡)

𝐾
])

3

𝐾2 𝑃(𝑡, 𝜏; 𝐾)𝑑𝐾
𝑆(𝑡)

0
, 

(6) 

where 𝑆(𝑡) represents the underlying price at time 𝑡, and 𝐶(𝑡, 𝜏; 𝐾) and 𝑃(𝑡, 𝜏; 𝐾) denote the 

OTM call and put option prices for strike K, respectively. The fair value of 𝜇(𝑡, 𝜏)  is 

approximated as: 

𝜇(𝑡, 𝜏) = 𝑒𝑟𝜏 − 1 −
𝑒𝑟𝜏

2
𝑉(𝑡, 𝜏) −

𝑒𝑟𝜏

6
𝑊(𝑡, 𝜏) −

𝑒𝑟𝜏

2
𝑋(𝑡, 𝜏). (7) 

When truncation occurs such that DOTM option prices are not observable, the observed OTM 

price data span a strike price domain of finite width, expressed as [𝐾min(𝑡, 𝜏), 𝐾max(𝑡, 𝜏)], where 

𝐾min(𝑡, 𝜏) and 𝐾max(𝑡, 𝜏) represent the minimum and maximum strike prices of the integration 

domain, respectively. The existence of these finite and non-zero endpoints implies that, in 

estimating the fair values of 𝑉(𝑡, 𝜏), 𝑊(𝑡, 𝜏), and 𝑋(𝑡, 𝜏) as defined in Equations (4)–(6) under 
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truncation, we are implicitly assuming that the OTM prices are zero for the strike price domains 

not covered by the observations. LRY demonstrates that this assumption is equivalent to truncating 

the implied RND itself, such that the risk-neutral probability is zero for the subset of strike prices 

outside the observed domain. Given this relationship, if implied moments are estimated over a 

period of time using daily option price observations with varying levels of truncation, the implied 

moments are effectively derived from daily implied RNDs that are truncated randomly. Therefore, 

proceeding with implied moment estimation under such truncation implies reliance on time-

varying assumptions about the shape of implied RND. This variability undermines the consistency 

and suitability of the estimation approach, rendering it unsuitable for robust analysis. According 

to LRY, this issue can be addressed by ensuring consistency in the truncation assumption for the 

implied RND across the sample. This can be achieved by making the truncation on the integration 

domain consistent. LRY addresses this concern through a truncation treatment method called 

domain stabilization (DS). The detailed procedure for implementing DS is explained in Section 4, 

and its effectiveness is evaluated in the context of the KOSPI200 index options market in Section 

5. 

 

3. Data 

This study uses daily closing price data from the KOSPI 200 index options market, covering the 

period from January 2015 to December 2023. The corresponding tick data, including transaction 

prices and the underlying index levels, are retrieved from the Korea Exchange. For each trading 

day, we identify the final transactions for each strike price that occur within the last minute before 

market close and use these observations exclusively for implied moment estimation. This approach 

has two key advantages: First, by eliminating the need to approximate option prices using bid and 

ask quotes, it avoids approximation errors inherent to such methods. Second, by considering prices 

only when the corresponding transactions occur during the last minute, it minimizes the risk of 

severe price staleness. We approximate the risk-free and dividend rates for each maturity by 

linearly interpolating the rates of adjacent maturities on the zero-coupon and futures-implied 

dividend curves. To approximate zero-coupon curves, we use the daily Korea Interbank Offered 

Rate (KORIBOR) data provided by the Bank of Korea. We collect daily closing prices of KOSPI 

200 index futures from the Korea Exchange to estimate daily futures-implied continuously 

compounded dividend rate curves. After retrieving all the necessary datasets, we apply a series of 
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data filtration criteria to ensure that the empirical analysis is conducted using only relevant and 

reliable option price observations, as outlined below. First, we remove options that are not OTM. 

Second, observations are discarded if the corresponding transaction price is below 0.03. Third, we 

exclude any observations with incomplete data entries. Finally, observations are discarded if they 

violate the no-arbitrage condition.  

Table 1 presents the summary statistics for the final dataset, revealing three noteworthy findings. 

First, the magnitude of Black-Scholes 𝑑1 is greater for OTM puts than calls, suggesting that OTM 

puts are deeper out-of-the-money on average. The asymmetry implies that the wider portion of the 

integration domain for implied moment estimation is covered by OTM puts, which is equivalent 

to a stronger impact of truncation on OTM calls. This tendency is also reflected in the percentile 

values. Second, the implied volatility level is higher for OTM puts than for OTM calls. This 

difference explains why truncation has a more severe impact on OTM call observations. Given the 

monotonic relationship between implied volatility and option price for a fixed level of moneyness, 

lower implied volatility translates into lower option prices, which increases the likelihood of 

exclusion by the minimum price filter. Third, compared to other observations, the observations 

with a time to maturity between 15 and 45 days do not exhibit significant differences. Therefore, 

although we focus on a single time to maturity of one month, it can be argued that the empirical 

results are representative of the entire KOSPI 200 index options market. 

 

[Table 1 inserted about here] 

 

Figure 1 illustrates the relationship between OTM option moneyness and the Black-Scholes 

implied volatility level across different sample subperiods. The figure reveals that, throughout the 

entire sample period, the implied volatility curve consistently exhibits a volatility smirk or skew, 

irrespective of the subperiod or the daily average implied volatility level. Based on prior literature 

that establishes a connection between implied moments and the shape of implied volatility curve 

(BKM; Zhang and Xiang, 2008), we conjecture that the implied RND is likely to be negatively 

skewed and leptokurtic, a hypothesis that we confirm in Section 5. 

 

[Figure 1 inserted about here] 
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4. Methodology 

The methodology applied to the empirical analysis in this study consists of three steps: 

constructing the implied volatility curve, estimating implied moments with or without applying 

DS, and conducting regression analysis to compare the information content of implied moment 

estimates with and without employing DS. To begin, we extract daily implied volatility curves for 

a one-month maturity from daily implied volatility surfaces constructed using observations from 

the final dataset. To construct the surfaces, we apply bilinear approximation to minimize the impact 

of abnormal observations and ensure feasibility even when data are available for no more than two 

maturities. The selection of a one-month maturity is motivated by two factors: the liquidity of 

markets for nearby maturities and the feasibility of interpolating between maturities shorter and 

longer than the target maturity. After extracting the implied volatility curve, we convert the implied 

volatility values into corresponding OTM option prices, further filtering out DOTM prices by 

reapplying a minimum price threshold of 0.03 to maintain consistency in data filtering. To 

minimize the effect of strike price discreteness, We set the strike price gap to 0.1, which is 1/25th 

of the original gap. 

After constructing a series of daily implied volatility curves for a fixed maturity, we proceed 

with DS as follows. First, we measure the locations of the minimum and maximum endpoints of 

daily implied volatility curves with respect to moneyness, which correspond to the endpoints of 

integration domains for implied moment estimators, over the sample period. Following the 

approach of LRY, moneyness is expressed in terms of Black-Scholes 𝑑1, defined as: 

𝑑1[𝑆(𝑡), 𝐾, 𝜎, 𝑟, 𝜏] =
𝑙𝑛[𝑆(𝑡)/𝐾]+[𝑟+𝜎2/2]𝜏

𝜎√𝜏
, (8) 

where 𝑆(𝑡) denotes the underlying price, 𝐾 representes the strike price, 𝜎 is the volatility of 

the underlying returns, 𝑟 represents the risk-free rate, and 𝜏 denotes the time to maturity. Next, 

we determine the percentiles of the minimum and maximum endpoints, considering the extent to 

which OTM price observations will be further discarded. Once the percentiles are chosen, we apply 

DS by discarding observations whose strike prices fall outside these percentile values. Specifically, 

for an intensity level of 𝑖 percent, we discard an OTM put price observation if the corresponding 

𝑑1 exceeds the 𝑖th percentile of daily maximum endpoint observations. Similarly, we exclude an 

OTM call price observation if the corresponding 𝑑1  is more negative than the (100 − 𝑖)th 
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percentile of daily minimum endpoint observations. If there are insufficient observations so that 

the daily implied volatility curve do not cover the entire range between the (100 − 𝑖)th percentile 

of daily minimum endpoint observations and the 𝑖th  percentile of daily maximum endpoint 

observations, we employ flat extrapolation to extend the implied volatility curve up to the two 

percentile values. After treatments, we obtain a series of implied volatility curve with consistent 

endpoints across the sample period. 

Finally, we estimate implied volatility, skewness, and kurtosis using the BKM estimators with 

and without DS applied, and conduct a set of regression analyses to investigate whether DS 

enhances the information content of implied moment estimates. We begin the regression analysis 

by examining the explanatory power of implied moment levels for the underlying price level using 

the following model: 

𝑙𝑛 [𝑆(𝑡)] = 𝛼 + 𝛽0 ∙ 𝑉𝑂𝐿(𝑡) + 𝛽1 ∙ 𝑆𝐾𝐸𝑊(𝑡) + 𝛽2 ∙ 𝐾𝑈𝑅𝑇(𝑡) + 𝜀(𝑡),  (9) 

where ln [𝑆(𝑡)] is the natural logarithm of the underlying KOSPI 200 index level on day 𝑡, 

𝑉𝑂𝐿(𝑡), 𝑆𝐾𝐸𝑊(𝑡), and 𝐾𝑈𝑅𝑇(𝑡) denote the levels of implied volatility, skewness, and kurtosis 

estimates on day 𝑡, respectively. Next, we investigate the explanatory power of the first-order 

differences of implied moments for the underlying log-returns with the following model: 

𝛥𝑙𝑛 [𝑆(𝑡)] = 𝛼 + 𝛽0 ∙ 𝛥𝑉𝑂𝐿(𝑡) + 𝛽1 ∙ 𝛥𝑆𝐾𝐸𝑊(𝑡) + 𝛽2 ∙ 𝛥𝐾𝑈𝑅𝑇(𝑡) + 𝜀(𝑡),  (10) 

where 𝛥 is the first-order difference operator. Finally, we conduct in-sample return predictability 

and out-of-sample return forecasting ability tests using the following model: 

𝛥𝑙𝑛 [𝑆(𝑡)] = 𝛼 + 𝛽0 ∙ 𝛥𝑙𝑛 [𝑆(𝑡 − 1)] + 𝛾0 ∙ 𝛥𝑉𝑂𝐿(𝑡 − 1) + 𝛾1 ∙ 𝛥𝑆𝐾𝐸𝑊(𝑡 − 1) + 𝛾2 ∙

𝛥𝐾𝑈𝑅𝑇(𝑡) + 𝜀(𝑡).  
(11) 

 

5. Empirical results 

5.1. Degree of truncation and moment estimates 

Table 2 presents the summary statistics of implied moment estimates, with DS not applied 

during their collection. The table reveals that the implied RND is generally negatively skewed and 

leptokurtic, consistent with findings from several previous studies. Notably, the log-return 

distribution of the underlying index also exhibits negative skewness and leptokurtosis, which can 

be regarded as a primary determinant of the moments of the implied RND. However, it is 

noteworthy that the kurosis of the underlying log-return distribution is significantly higher than 

the implied kurtosis on average, a difference that may be attributed to truncation. 
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[Table 2 inserted about here] 

 

Figure 2 illustrates the dynamics of daily implied moment estimates over the sample period. 

Panel A presents the implied volatility estimate dynamics, which demonstrates a time trend without 

significant noise. The clear dynamics suggest that the implied volatility estimates are not 

significantly affected by noise factors such as truncation, which is consistent with LRY. By 

comparison, Panels B and C, which depict the implied skewness and kurtosis estimate dynamics, 

respectively, reveal that the estimate dynamics are heavily affected by noisy fluctuations. These 

fluctuations are likely attributable to variations in the degree of truncation, as also noted in LRY.  

 

[Figure 2 inserted about here] 

 

Figure 3 depicts the changes in the shape of the integration domain, measured in various ways, 

over the sample period. Panels A and B show that when we the width of integration domain is 

measured in nominal price terms, it begins to expand notably from 2020, coinciding with the onset 

of the COVID-19 period. This widening is primarily attributed to an increase in implied volatility, 

as evidenced in Panel A of Figure 2. In contrast, Panel C of Figure 3, which examines the 

integration domain in terms of Black-Scholes 𝑑1, the noisy fluctuations are more pronounced, 

indicating that these fluctuations are a key factor driving the variability in the integration domain. 

This, in turn, may contribute to the noisy dynamics observed in the implied higher moment 

estimates, as noted by LRY.  

 

[Figure 3 inserted about here] 

 

6. Conclusion 

This study examines the whether DS effectively enhances the informational content of model-

free implied moment estimates in the KOSPI 200 index options market. In addition to evaluating 

DS in a new market context, we conduct the evaluation from a wider range of perspectives. 

Specifically, we assess not only the in-sample and out-of-sample predictive and forecasting 

abilities but also the contemporaneous explanatory power of implied moment estimates and their 
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first-order differences with respect to the underlying log-price and log-returns. The empirical 

results demonstrate that DS improves the contemporaneous explanatory power, enhances in-

sample predictive accuracy, and strengthens out-of-sample forecasting performance of implied 

moment estimates. These findings suggest that DS is an effective truncation treatment method, 

aligning with the results of LRY. Future research could explore whether the return predictive and 

forecasting abilities of implied moment estimates improve with DS even on an intra-day basis.   
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Table 1. Sample summary statistics   

Panel A. Black-Scholes 𝑑1 

 Maturity between 15 and 45 days Other maturities 
 Puts Calls Puts Calls 

Mean 1.376  -1.130  1.405  -1.178  

Median 1.409  -1.125  1.425  -1.187  

Std. dev. 0.676  0.671  0.621  0.611  

5th pct. 0.241  -2.221  0.323  -2.160  

95th pct. 2.443  -0.075  2.379  -0.141  

Skewness -0.065  -0.064  -0.110  0.032  

Kurtosis 2.100  1.967  2.328  2.230  

# of obs. 32,564  21,775  21,461  16,075  

 

Panel B. Black-Scholes implied volatility 

 Maturity between 15 and 45 days Other maturities 
 Puts Calls Puts Calls 

Mean 0.229  0.153  0.233  0.155  

Median 0.202  0.138  0.200  0.137  

Std. dev. 0.105  0.064  0.119  0.065  

5th pct. 0.122  0.098  0.126  0.099  

95th pct. 0.435  0.253  0.465  0.275  

Skewness 2.129  3.835  2.621  2.889  

Kurtosis 9.555  24.441  12.772  14.030  

# of obs. 32,564  21,775  21,461  16,075  

Notes: This table presents summary statistics for Black-Scholes 𝑑1 and implied volatility of the 

KOSPI 200 index options dataset used in this study. After data filtration, the daily sample of option 

prices comprises 91,875 observations, spanning from January 2015 to December 2023. The 

following criteria are applied to exclude inappropriate observations: (1) the option is not out-of-

the-money; (2) the closing price is below 0.03; (3) any corresponding data entries are missing; and 

(4) the no-arbitrage condition is violated. 
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Table 2. Underlying price and implied moment estimates 

 Panel A. Levels  Panel B. Daily first-order differences 

ln(S) VOL SKEW KURT  ∆ln(S)∙102 ∆VOL ∆SKEW ∆KURT 

Mean 5.694 0.164 -0.988 5.081  0.022 0.000 0.000 0.000 

Median 5.685 0.146 -0.943 4.665  0.059 0.000 0.005 -0.033 

Std. dev. 0.159 0.062 0.414 1.857  1.209 0.016 0.245 1.350 

5th pct. 5.476 0.109 -1.740 3.127  -1.831 -0.021 -0.398 -2.044 

95th pct. 6.021 0.272 -0.405 8.550  1.809 0.023 0.394 2.144 

Skewness 0.505 3.109 -0.843 2.130  -0.729 1.944 -0.201 0.221 

Kurtosis 2.642 17.918 4.434 10.807  11.792 33.729 4.418 6.222 

# of obs. 1,703 1,703 1,703 1,703  1,702 1,702 1,702 1,702 

Notes: This table presents summary statistics for the daily closing underlying log-prices and 

implied moment estimates, calculated without applying domain stabilization. To estimate the 

implied moments, we approximate option prices for a one-month time to maturity based on daily 

implied volatility surfaces. Panels A and B report the summary statistics for the levels and first-

order differences, respectively. In Panel B, only cases with exactly a one-trading-day gap between 

two sample days are considered. 
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Table 3. Moment estimates after domain stabilization 

Panel A. Volatility  

 Level  First-order difference 

Intensity 0% 25% 50% 75% 100%  0% 25% 50% 75% 100% 

Mean 0.167 0.166 0.164 0.162 0.130  0.000 0.000 0.000 0.000 0.000 

Median 0.148 0.147 0.146 0.145 0.117  0.000 0.000 0.000 0.000 0.000 

Std. dev. 0.065 0.065 0.064 0.063 0.048  0.018 0.018 0.017 0.017 0.013 

5th pct. 0.111 0.110 0.109 0.107 0.087  -0.022 -0.022 -0.021 -0.021 -0.016 

95th pct. 0.275 0.271 0.267 0.263 0.209  0.024 0.023 0.023 0.022 0.017 

Skewness 3.518 3.552 3.576 3.592 3.381  3.580 3.563 3.582 3.625 3.649 

Kurtosis 22.447 22.949 23.314 23.628 21.847  68.870 70.442 71.998 73.769 71.450 

# of obs. 1,703 1,703 1,703 1,703 1,703  1,702 1,702 1,702 1,702 1,702 

 

Panel B. Skewness 

 Level  First-order difference 

Intensity 0% 25% 50% 75% 100%  0% 25% 50% 75% 100% 

Mean -1.072 -1.018 -0.958 -0.879 -0.307  0.000 0.000 0.000 0.000 0.000 

Median -1.018 -0.982 -0.927 -0.852 -0.314  0.004 0.005 0.006 0.004 -0.001 

Std. dev. 0.430 0.337 0.288 0.240 0.073  0.217 0.161 0.134 0.110 0.041 

5th pct. -1.898 -1.658 -1.504 -1.326 -0.411  -0.354 -0.263 -0.219 -0.180 -0.055 

95th pct. -0.484 -0.532 -0.536 -0.516 -0.180  0.324 0.245 0.203 0.165 0.053 

Skewness -0.978 -0.643 -0.600 -0.584 1.009  -0.275 -0.296 -0.204 -0.051 2.285 

Kurtosis 4.571 3.432 3.387 3.435 6.319  5.582 5.157 5.537 6.148 24.277 

# of obs. 1,703 1,703 1,703 1,703 1,703  1,702 1,702 1,702 1,702 1,702 

 

Panel C. Kurtosis 

 Level  First-order difference 

Intensity 0% 25% 50% 75% 100%  0% 25% 50% 75% 100% 

Mean 6.089 5.289 4.710 4.043 1.095  0.000 0.000 0.000 0.000 0.000 

Median 5.599 5.107 4.602 3.954 1.092  -0.037 -0.008 -0.003 0.000 0.000 

Std. dev. 2.053 1.115 0.792 0.547 0.072  1.273 0.635 0.425 0.276 0.045 

5th pct. 4.027 3.867 3.677 3.333 0.993  -1.898 -1.036 -0.701 -0.447 -0.071 

95th pct. 9.979 7.571 6.340 5.174 1.223  1.971 1.034 0.712 0.446 0.070 

Skewness 2.242 1.124 1.057 1.086 0.102  0.101 0.197 0.153 0.054 0.000 

Kurtosis 11.021 4.732 4.576 4.765 6.692  7.766 4.201 4.486 5.104 6.810 

# of obs. 1,703 1,703 1,703 1,703 1,703  1,702 1,702 1,702 1,702 1,702 

Notes: This table provides summary statistics for the implied volatility, skewness, and kurtosis 

estimates after applying domain stabilization at different intensity levels. 0%, 25%, 50%, 75%, 

and 100% indicate the intensity levels. 
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Table 4. Correlations among underlying log-prices and implied moment estimates 

Panel A. No stabilization 

 
Level 

 
First-order difference 

ln(S) VOL SKEW KURT ∆ln(S) ∆VOL ∆SKEW ∆KURT 

ln(S) 1.000 - - - ∆ln(S) 1.000 - - - 

VOL 0.055 1.000 - - ∆VOL -0.633 1.000 - - 

SKEW 0.041 -0.330 1.000 - ∆SKEW 0.096 -0.251 1.000 - 

KURT 0.034 0.175 -0.860 1.000 ∆KURT 0.003 0.138 -0.865 1.000 

Panel B. 0% stabilization 

 
Level 

 
First-order difference 

ln(S) VOL SKEW KURT ∆ln(S) ∆VOL ∆SKEW ∆KURT 

ln(S) 1.000 - - - ∆ln(S) 1.000 - - - 

VOL 0.041 1.000 - - ∆VOL -0.639 1.000 - - 

SKEW 0.075 -0.386 1.000 - ∆SKEW 0.204 -0.287 1.000 - 

KURT -0.009 0.204 -0.877 1.000 ∆KURT -0.043 0.124 -0.877 1.000 

Panel C. 25% stabilization 

 
Level 

 
First-order difference 

ln(S) VOL SKEW KURT ∆ln(S) ∆VOL ∆SKEW ∆KURT 

ln(S) 1.000 - - - ∆ln(S) 1.000 - - - 

VOL 0.041 1.000 - - ∆VOL -0.642 1.000 - - 

SKEW 0.092 -0.404 1.000 - ∆SKEW 0.298 -0.343 1.000 - 

KURT -0.017 0.241 -0.885 1.000 ∆KURT -0.149 0.177 -0.847 1.000 

Panel D. 50% stabilization 

 
Level 

 
First-order difference 

ln(S) VOL SKEW KURT ∆ln(S) ∆VOL ∆SKEW ∆KURT 

ln(S) 1.000 - - - ∆ln(S) 1.000 - - - 

VOL 0.041 1.000 - - ∆VOL -0.642 1.000 - - 

SKEW 0.108 -0.409 1.000 - ∆SKEW 0.298 -0.343 1.000 - 

KURT -0.030 0.250 -0.874 1.000 ∆KURT -0.149 0.177 -0.847 1.000 

Panel E. 75% stabilization 

 
Level 

 
First-order difference 

ln(S) VOL SKEW KURT ∆ln(S) ∆VOL ∆SKEW ∆KURT 

ln(S) 1.000 - - - ∆ln(S) 1.000 - - - 

VOL 0.041 1.000 - - ∆VOL -0.642 1.000 - - 

SKEW 0.124 -0.405 1.000 - ∆SKEW 0.315 -0.350 1.000 - 

KURT -0.042 0.252 -0.857 1.000 ∆KURT -0.171 0.178 -0.818 1.000 

Panel F. 100% stabilization 

 
Level 

 
First-order difference 

ln(S) VOL SKEW KURT ∆ln(S) ∆VOL ∆SKEW ∆KURT 

ln(S) 1.000 - - - ∆ln(S) 1.000 - - - 

VOL 0.052 1.000 - - ∆VOL -0.645 1.000 - - 

SKEW 0.286 0.151 1.000 - ∆SKEW 0.112 -0.076 1.000 - 

KURT -0.050 0.024 -0.596 1.000 ∆KURT -0.082 0.008 -0.572 1.000 

Notes: This table presents the estimated correlation among the log price, implied volatility, implied 

skewness, and implied kurtosis, which are denoted as ln(S), VOL, SKEW, and KURT, respectively.  
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Table 5. Explanatory power of implied moments for underlying log-price: Levels  

 No 

stabilization 

0 percent 

stabilization 

25 percent 

stabilization 

50 percent 

stabilization 

75 percent 

stabilization 

100 percent 

stabilization 

VOL(t) 
0.294 0.324 0.360 0.361 0.360 -0.042 

(0.91) (1.03) (1.17) (1.17) (1.16) (-0.55) 

SKEW(t) 
0.134***  0.151***  0.229***  0.255***  0.287***  0.869***  

(2.63) (2.80) (3.33) (3.40) (3.49) (13.71) 

KURT(t) 
0.027*** 0.025***  0.054***  0.068***  0.085***  0.422***  

(2.87)  (2.61)  (2.98)  (2.89)  (2.76)  (6.56)  

Intercept 
5.641***  5.650***  5.583***  5.559***  5.542***  5.505***  

(125.27)  (122.01)  (94.09)  (80.61)  (68.92)  (90.89)  

# of obs. 1,703 1,703 1,703 1,703 1,703 1,703 

Unadjusted R2 0.031  0.033 0.044 0.045 0.047 0.104 

AIC 
Value -1470.25 -1474.30 -1494.15 -1495.99 -1499.02 -1604.64 

Diff. 0.00 -4.05 -23.90 -25.74 -28.77 -134.39 

BG 1671.1*** 1678.6*** 1674.1*** 1674.6*** 1674.6*** 1636.9*** 

BP  25.3*** 9.9*** 8.9*** 7.3*** 5.5** 43.5*** 

Notes: This table presents the regression results of the underlying log-price on the levels of implied 

moments, using domain stabilization at various intensity levels. The dependent variable, ln [𝑆(𝑡)], 

represents the natural logarithm of the S&P 500 index on day 𝑡 . 𝑉𝑂𝐿(𝑡) , 𝑆𝐾𝐸𝑊(𝑡) , and 

𝐾𝑈𝑅𝑇(𝑡) denote the daily levels of implied volatility, skewness, and kurtosis estimates on day 𝑡, 

respectively. Newey-West standard errors are employed to address residual autocorrelation and 

heteroskedasticity, with a lag length of nine selected according to Andrew’s rule. The difference 

in information criteria (Diff.) reflects the variation in OLS-based Akaike information criterion 

(AIC) values relative to the no stabilization case. The Breusch-Godfrey (BG) and Breusch-Pagan 

(BP) tests report 𝜒2(1) statistics for testing autocorrelation and heteroscadasticity, respectively. 

𝑡-statistics are presented in parentheses. ***, **, and * indicate statistical significance at the 1%, 5%, 

and 10% levels, respectively. 
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Table 6. Explanatory power of implied moments for underlying log-price: First-order differences  

 No 

stabilization 

0 percent 

stabilization 

25 percent 

stabilization 

50 percent 

stabilization 

75 percent 

stabilization 

100 percent 

stabilization 

ΔVOL(t) 
-47.23*** -40.84*** -40.99*** -41.47*** -42.34*** -59.99*** 

(-19.20) (-16.88) (-16.39) (-16.35) (-16.34) (-19.06) 

ΔSKEW(t) 
0.271  1.452*** 1.828*** 1.838*** 1.761*** 0.856 

(0.90) (3.96) (3.52) (3.13) (2.65) (0.70) 

ΔKURT(t) 
0.124** 0.247*** 0.370*** 0.368** 0.288 -1.621** 

(2.54)  (4.31) (3.28) (2.37) (1.31) (-2.11) 

Intercept 
0.024  0.024 0.024 0.024 0.023 0.024 

(0.99)  (0.99) (0.99) (0.99) (1.00) (1.00) 

# of obs. 1,702 1,702 1,702 1,702 1,702 1,702 

Unadjusted R2 0.410  0.421 0.423 0.423 0.423 0.423 

AIC 
Value 4585.56 4549.60 4546.98 4547.30 4547.05 4548.17 

Diff. 0.00 -35.96 -38.58 -38.26 -38.51 -37.39 

BG 6.4** 6.7*** 6.1** 6.2** 6.4** 6.5** 

BP  1.1 75.3*** 70.1*** 70.9*** 71.6*** 91.7*** 

Notes: This table presents the regression results of the underlying log-return on the first-order 

differences of implied moments, using domain stabilization at various intensity levels. The 

dependent variable, 100‧𝛥𝑙𝑛𝑆(𝑡), represents log-return of the S&P 500 index on day 𝑡 expressed 

in percentage. 𝛥𝑉𝑂𝐿(𝑡), 𝛥𝑆𝐾𝐸𝑊(𝑡), and 𝛥𝐾𝑈𝑅𝑇(𝑡) denote the daily first-order differences of 

implied volatility, skewness, and kurtosis estimates on day 𝑡, respectively. Newey-West standard 

errors are employed to address residual autocorrelation and heteroskedasticity, with a lag length 

of nine selected according to Andrew’s rule. The difference in information criteria (Diff.) reflects 

the variation in OLS-based Akaike information criterion (AIC) values relative to the no 

stabilization case. The Breusch-Godfrey (BG) and Breusch-Pagan (BP) tests report 𝜒2 (1) 

statistics for testing autocorrelation and heteroscadasticity, respectively. 𝑡-statistics are presented 

in parentheses. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels, 

respectively. 
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Table 7. In-sample return predictive ability of implied moments 

 No 

stabilization 

0 percent 

stabilization 

25 percent 

stabilization 

50 percent 

stabilization 

75 percent 

stabilization 

100 percent 

stabilization 

ΔlnS(t-1) 
0.021 0.007 0.003 0.003 0.003 -0.002 

(0.61) (0.23) (0.10) (0.11) (0.10) (-0.05) 

ΔVOL(t-1) 
-1.411 -3.341 -2.961 -2.904 -2.927 -3.763 

(-0.36) (-0.76) (-0.65) (-0.64) (-0.65) (-0.68) 

ΔSKEW(t-1) 
-0.738* -0.612 -0.153 0.037 0.163 -0.716 

(-1.76) (-1.51) (-0.33) (0.08) (0.33) (-0.89) 

ΔKURT(t-1) 
-0.092 -0.067 0.103 0.239* 0.395* 0.957 

(-1.49) (-1.18) (1.12) (1.84) (1.86) (0.95) 

Intercept 
0.022 0.022 0.022 0.022 0.022 0.023 

(0.74) (0.76) (0.76) (0.76) (0.76) (0.76) 

# of obs. 1,701 1,701 1,701 1,701 1,701 1,701 

Unadjusted R2 0.004 0.002 0.004 0.005 0.005 0.002 

AIC 
Value 5472.94 5476.94 5473.43 5471.21 5471.39 5476.32 

Diff. 0.00 4.00 0.49 -1.73 -1.55 3.38 

BG 0.7 7.7*** 3.8* 3.5* 3.3* 13.1*** 

BP  37.5*** 60.0*** 52.3*** 61.0*** 75.8*** 70.8*** 

Notes: This table presents the regression results of the underlying log-return on the first-order 

differences of implied moments, using domain stabilization at various intensity levels. The 

dependent variable, 𝛥𝑙𝑛𝑆(𝑡), represents the log-return of the S&P 500 index on day 𝑡. The lagged 

log-return, 𝛥𝑙𝑛𝑆(𝑡 − 1), is included as an independent variable to control for return reversals. 

𝛥𝑉𝑂𝐿(𝑡 − 1) , 𝛥𝑆𝐾𝐸𝑊(𝑡 − 1) , and 𝛥𝐾𝑈𝑅𝑇(𝑡 − 1)  denote the lagged daily first-order 

differences of implied volatility, skewness, and kurtosis estimates, respectively. Newey-West 

standard errors are employed to address residual autocorrelation and heteroskedasticity, with a lag 

length of nine selected according to Andrew’s rule. The difference in information criteria (Diff.) 

reflects the variation in OLS-based Akaike information criterion (AIC) values relative to the no 

stabilization case. The Breusch-Godfrey (BG) and Breusch-Pagan (BP) tests report 𝜒2 (1) 

statistics for testing autocorrelation and heteroscadasticity, respectively. 𝑡-statistics are presented 

in parentheses. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels, 

respectively. 
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Table 8. Out-of-sample return forecasting ability of implied moments after stabilization   

Rolling 

window 

length 

𝑅𝑂𝑆
2  

No  

stabilization 

0 percent 

stabilization 

25 percent 

stabilization 

50 percent 

stabilization 

75 percent 

stabilization 

100 percent 

stabilization 

5 months -9.79  -13.96  -13.40  -13.12  -13.51  -13.06  

10 months -4.77  -7.66  -7.86  -7.76  -7.96  -6.58  

15 months -3.97  -6.07  -5.94  -5.75  -5.87  -4.69  

20 months -2.36  -4.21  -4.12  -4.01  -4.11  -3.17  

25 months -1.93  -3.40  -3.09  -2.98  -3.08  -2.65  

30 months -1.98  -2.80  -2.37  -2.23  -2.33  -1.95  

35 months -1.64  -2.12  -1.74  -1.61  -1.74  -1.62  

40 months -1.53  -1.91  -1.62  -1.52  -1.66  -1.51  

45 months -1.27  -1.59  -1.33  -1.20  -1.26  -1.27  

50 months -0.93  -1.29  -1.05  -0.88  -0.91  -1.05  

55 months -1.01  -1.35  -1.10  -0.87  -0.86  -1.03  

60 months -0.86  -1.00  -0.53  -0.36  -0.40  -0.71  

65 months -1.33  -1.16  -0.45  -0.25  -0.31  -0.57  

70 months -1.00  -0.66  -0.28  -0.21  -0.25  -0.38  

75 months -1.15  -0.56  -0.21  0.11  0.05  -0.53  

80 months -2.29  -0.84  0.07  0.45  0.59  -0.14  

Notes: This table presents the results of the out-of-sample return forecasting ability test. Following 

Campbell and Thompson (2008), we report the 𝑅𝑂𝑆
2  statistic, which is defined as 𝑅𝑂𝑆

2 = 1 −
[∑ (𝑟𝑡 − 𝑟𝑡̂)2𝑇

𝑡=1 ]/[∑ (𝑟𝑡 − 𝑟𝑡̅)2𝑇
𝑡=1 ] , where 𝑟𝑡̂  is the fitted value derived from a predictive 

regression estimated through the rolling window that ends at time 𝑡 − 1, and 𝑟𝑡̅ is the benchmark 

value for the rolling window. Benchmark value is defined as the historical mean log-return. A 

positive value of 𝑅𝑂𝑆
2  indicates that the predictive regression produces a lower mean squared 

prediction error than the benchmark value. The value of 𝑅𝑂𝑆
2  is expressed as a percentage. 
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2015 to 2017 2018 to 2019 

  
2020 to 2021 2022 to 2023 

Figure 1. Black-Scholes implied volatility by moneyness and time period 

Notes: This figure illustrates the level of Black-Scholes implied volatility for out-of-the-money 

options, categorized by moneyness and time period. To enhance the clarity of the implied volatility 

curve, we focus exclusively on options with a time to maturity between 15 and 45 calendar days, 

consistent with the one-month time to maturity assumed in this study. Moneyness is measured 

using Black-Scholes 𝑑1, which has been sign-switched to adhere to the convention of displaying 

puts on the left and calls on the right. 
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Panel A. Implied volatility estimate 

 

 
Panel B. Implied skewness estimate 

 

 
Panel C. Implied kurtosis estimate 

Figure 2. Dynamics of implied moment estimates 

Notes: This figure depicts the daily dynamics of implied moment estimates, calculated using the 

BKM estimators, for a fixed one-month time to maturity across the full sample period from 2015 

to 2023. We do not consider any truncation error correction method for implied moment estimation. 
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Panel A. Strike price level 

 

 
Panel B. Strike price gap from underlying price 

 

 
Panel C. Black-Scholes 𝑑1 

Figure 3. Dynamics of the integration domain 

Notes: This figure illustrates the time-series dynamics of the integration domain after data filtering. 

The minimum and maximum endpoints of the integration domain are defined as 𝐾min  and 𝐾max  

in Panel A, 𝐾min − 𝑆 and 𝐾max − 𝑆 in Panel B, and 𝑑1(𝐾min) and 𝑑1(𝐾max) in Panel C. Here, 

𝐾min  and 𝐾max  represent the minimum and maximum strike prices of the integration domain, 𝑆 

is the underlying price, and 𝑑1 refers to the Black-Scholes 𝑑1. 
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Panel A. 0 percent stabilization 

 
Panel B. 50 percent stabilization 

 
Panel C. 100 percent stabilization 

Figure 4. Integration domain after domain stabilization 

Notes: This figure depicts the dynamics of the integration domain endpoints following the 

impliementation of domain stabilization at varying intensity levels. Under n percent stabilization, 

OTM option price observations are excluded if their 𝑑1 values fall below the 𝑛th percentile of 

the daily minimum 𝑑1 values or exceed the (100 − 𝑛)th percentile of the daily maximum d1 

values. Subsequently, the flat extrapolation method proposed b Jiang and Tian (2005) is applied 

up to those percentiles. Dark-shaded areas represent portions of the integration domain with 

observed OTM option prices, while light-shaded areas indicate regions with extrapolated prices. 
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Implied volatility estimate Implied skewness estimate Implied kurtosis estimate 

Panel A. 0 percent intensity 

 

   
Implied volatility estimate Implied skewness estimate Implied kurtosis estimate 

Panel B. 50 percent intensity 

 

   
Implied volatility estimate Implied skewness estimate Implied kurtosis estimate 

Panel C. 100 percent intensity 

 

Figure 5. Dynamics of implied moment estimate after domain stabilization 

Notes: This figure shows the dynamics of implied moment estimates after applying domain 

stabilization at different intensity levels. 

 


