Effectiveness of domain stabilization: Evidence from the KOSPI 200 options market

Geul Lee

Department of Economics Sungkyunkwan University

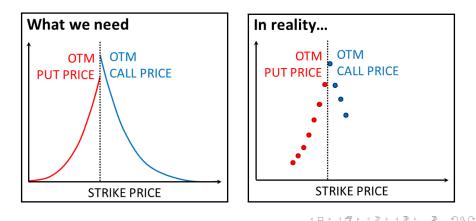
KAFE Fall Conference November 29, 2024

Effectiveness of domain stabilization

Bakshi, Kapadia, and Madan (BKM; 2003)

The volatility, skewness, and kurtosis of the implied risk-neutral log-return density can be derived from out-of-the-money option prices without relying on any model

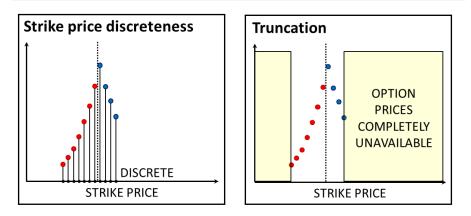
- The implied moments contain information about the market participants' expectations of the underlying asset price dynamics
- A popular estimation method:
 - (1) The moments are single figures, ready-made for empirical studies
 - (2) No worries about assumptions


We only need to integrate out-of-the-money (OTM) option prices

We can calculate V, W, X by integrating weighted OTM option prices with respect to strike price

$$V(t,\tau) = \int_{S(t)}^{\infty} \frac{2\left(1 - \ln\left[\frac{K}{S(t)}\right]\right)}{K^2} C(t,\tau;K) dK$$
$$+ \int_{0}^{S(t)} \frac{2\left(1 + \ln\left[\frac{S(t)}{K}\right]\right)}{K^2} P(t,\tau;K) dK$$

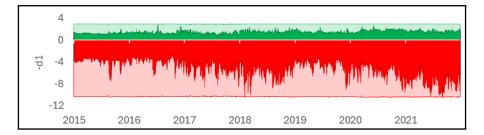
Limited OTM option price availability


Requirement: OTM option prices for the strike prices {K : $0 \le K < \infty$ } Available: OTM option prices only for a limited set of strike prices

Effectiveness of domain stabilization

We can characterize the limitation as discreteness and truncation

Discreteness: option prices available only for a discrete set of strike prices Truncation : DOTM option prices completely unavailable

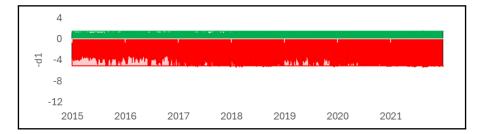


Effectiveness of domain stabilization

Which one is harder to deal with?

- Discreteness: Numerical methods for interpolation are available, and interpolation is more reliable than extrapolation
- Truncation: Information is more limited for the strike price domain beyond the minimum and maximum strike prices and, therefore, a stronger assumption is required for approximation

- Lee, Ryu, and Yang (2024) propose a new remedy for truncation error, called domain stabilization (DStab)
- DStab stabilizes the Black-Scholes *d*₁ of integration domain endpoints either by linear extrapolation or further discarding observations
- As the DStab intensity level increases, DStab relies more heavily on discarding observations

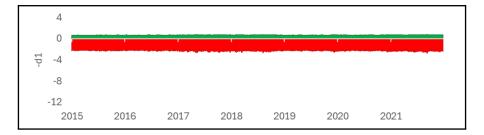


Effectiveness of domain stabilization

8/19

キロマネロマネ 山下 小田 マン

DQC



Effectiveness of domain stabilization

⊳ ⊰ 🗇 9 / 19 (종종) 종종)

DQC

₹

Effectiveness of domain stabilization

10/19

Ð

DQC

- Lee, Ryu, and Yang (2024) demonstrate that DStab improves both in-sample return predictability and out-of-sample forecasting accuracy in the S&P 500 index options market
- In this study, we investigate whether similar results can be achieved in the KOSPI 200 index options market

- KOSPI 200 index options, daily data, spanning from January 2015 to December 2023
- We remove options that are not OTM, have transaction price below 0.03, have incomplete data entries, or violate the no-arbitrage condition
- We extract daily implied volatility curves for a one-month maturity from daily implied volatility surfaces constructed using observations from the final dataset

Models

• Explanatory power of implied moments: Levels

$$\begin{aligned} &\ln \left[S(t) \right] = \alpha + \beta_0 \cdot \textit{VOL}(t) + \beta_1 \cdot \textit{SKEW}(t) \\ &+ \beta_2 \cdot \textit{KURT}(t) + \varepsilon(t) \end{aligned}$$

• Explanatory power of implied moments: First-order differences

$$\Delta \ln [S(t)] = \alpha + \beta_0 \cdot \Delta VOL(t) + \beta_1 \cdot \Delta SKEW(t) + \beta_2 \cdot \Delta KURT(t) + \varepsilon(t)$$

 In-sample return predictive and out-of-sample return forecasting ability

$$\Delta \ln [S(t)] = \alpha + \beta \cdot \Delta \ln [S(t-1)] + \gamma_0 \cdot \Delta VOL(t-1) + \gamma_1 \cdot \Delta SKEW(t-1) + \gamma_2 \cdot \Delta KURT(t-1) + \varepsilon(t)$$

3

Explanatory power of implied moments

	No	0 percent	25 percent	50 percent	75 percent	100 percent
	stabilizatio	n stabilization	stabilization	stabilization	stabilization	stabilization
VOL(t)	0.294	0.324	0.360	0.361	0.360	-0.042
VOL(I)	(0.91)	(1.03)	(1.17)	(1.17)	(1.16)	(-0.55)
SKEW(t)	0.134***	0.151***	0.229^{***}	0.255^{***}	0.287^{***}	0.869^{***}
SKEW(I)	(2.63)	(2.80)	(3.33)	(3.40)	(3.49)	(13.71)
VI IDT()	0.027^{***}	0.025***	0.054^{***}	0.068^{***}	0.085^{***}	0.422^{***}
KURT(t)	(2.87)	(2.61)	(2.98)	(2.89)	(2.76)	(6.56)
T (5.641***	5.650***	5.583***	5.559^{***}	5.542***	5.505***
Intercept	(125.27) (122.01)	(94.09)	(80.61)	(68.92)	(90.89)
# of obs.	1,703	1,703	1,703	1,703	1,703	1,703
Unadjusted .	R^2 0.031	0.033	0.044	0.045	0.047	0.104
AIC Valu	e -1470.2	5 -1474.30	-1494.15	-1495.99	-1499.02	-1604.64
Diff.		-4.05	-23.90	-25.74	-28.77	-134.39
BG	1671.1^{*}				1674.6***	_{හළ} 1636.9***
BP	25.3***	9.9***	8.9***	7.3***	5.5********	43.5***

Effectiveness of domain stabilization

(문) (종) (종) (종)

DQC

Explanatory power of implied moments

	No	0 percent	25 percent	50 percent	75 percent	100 percent
	stabilization	stabilization	stabilization	stabilization	stabilization	stabilization
AVOLO	-47.23***	-40.84***	- 40.99 ^{***}	-41.47***	-42.34***	-59.99***
$\Delta VOL(t)$	(-19.20)	(-16.88)	(-16.39)	(-16.35)	(-16.34)	(-19.06)
$\Delta SKEW(t)$	0.271	1.452^{***}	1.828^{***}	1.838^{***}	1.761^{***}	0.856
$\Delta SKEW(l)$	(0.90)	(3.96)	(3.52)	(3.13)	(2.65)	(0.70)
ARTIDICA	0.124^{**}	0.247^{***}	0.370^{***}	0.368^{**}	0.288	-1.621**
$\Delta KURT(t)$	(2.54)	(4.31)	(3.28)	(2.37)	(1.31)	(-2.11)
Tutonoont	0.024	0.024	0.024	0.024	0.023	0.024
Intercept	(0.99)	(0.99)	(0.99)	(0.99)	(1.00)	(1.00)
# of obs.	1,702	1,702	1,702	1,702	1,702	1,702
Unadjusted R^2	0.410	0.421	0.423	0.423	0.423	0.423
AIC Value	4585.56	4549.60	4546.98	4547.30	4547.05	4548.17
Diff.	0.00	-35.96	-38.58	-38.26	-38.51	-37.39
BG	6.4**	6.7^{***}	6.1**	6.2^{**}	6.4**	.5 ^{**}
BP	1.1	75.3***	70.1***	70.9***	71.6 ^{***}	** Windo 91:57****

Effectiveness of domain stabilization

15 / 19

월 🕨 종종 🖉 🖉 🖉

DQC

Э

In-sample return predictive ability

		No	0 percent	25 percent	50 percent	75 percent	100 percent
		stabilization	stabilization	stabilization	stabilization	stabilization	stabilization
$\Delta lnS(t-1)$	0.021	0.007	0.003	0.003	0.003	-0.002	
	-1)	(0.61)	(0.23)	(0.10)	(0.11)	(0.10)	(-0.05)
$\Delta VOL(t-1)$	-1.411	-3.341	-2.961	-2.904	-2.927	-3.763	
	(1-1)	(-0.36)	(-0.76)	(-0.65)	(-0.64)	(-0.65)	(-0.68)
$\Delta SKEW(t-1)$	W(+ 1)	-0.738*	-0.612	-0.153	0.037	0.163	-0.716
	W(l-1)	(-1.76)	(-1.51)	(-0.33)	(0.08)	(0.33)	(-0.89)
$\Delta KURT(t-1)$	DT(4 1)	-0.092	-0.067	0.103	0.239^{*}	0.395^{*}	0.957
	(1-1)	(-1.49)	(-1.18)	(1.12)	(1.84)	(1.86)	(0.95)
Intercept		0.022	0.022	0.022	0.022	0.022	0.023
	ept	(0.74)	(0.76)	(0.76)	(0.76)	(0.76)	(0.76)
# of o	bs.	1,701	1,701	1,701	1,701	1,701	1,701
Unadj	usted R^2	0.004	0.002	0.004	0.005	0.005	0.002
AIC	Value	5472.94	5476.94	5473.43	5471.21	5471.39	5476.32
AIC	Diff.	0.00	4.00	0.49	-1.73	-1.55	3.38
BG		0.7	7.7***	3.8*	3.5*	3.3 [*] ^{Window} (설정)으로	s 정품 인증 이동하여 Wild3: 비행동 인종합니다.
BP		37.5***	60.0^{***}	52.3***	61.0***	75.8***	70.8^{***}

Geul Lee

Effectiveness of domain stabilization

16 / 19

리에 수준에 수준이다.

Out-of-sample return forecasting ability

Rolling	R_{OS}^2					
window	No	0 percent	25 percent	50 percent	75 percent	100 percent
length	stabilization	stabilization	stabilization	stabilization	stabilization	stabilization
5 months	-9.79	-13.96	-13.40	-13.12	-13.51	-13.06
10 months	-4.77	-7.66	-7.86	-7.76	-7.96	-6.58
15 months	-3.97	-6.07	-5.94	-5.75	-5.87	-4.69
20 months	-2.36	-4.21	-4.12	-4.01	-4.11	-3.17
25 months	-1.93	-3.40	-3.09	-2.98	-3.08	-2.65
30 months	-1.98	-2.80	-2.37	-2.23	-2.33	-1.95
35 months	-1.64	-2.12	-1.74	-1.61	-1.74	-1.62
40 months	-1.53	-1.91	-1.62	-1.52	-1.66	-1.51
45 months	-1.27	-1.59	-1.33	-1.20	-1.26	-1.27
50 months	-0.93	-1.29	-1.05	-0.88	-0.91	-1.05
55 months	-1.01	-1.35	-1.10	-0.87	-0.86	-1.03
60 months	-0.86	-1.00	-0.53	-0.36	-0.40	-0.71
65 months	-1.33	-1.16	-0.45	-0.25	-0.31	-0.57
70 months	-1.00	-0.66	-0.28	-0.21	-0.25	-0.38
75 months	-1.15	-0.56	-0.21	0.11	0.05	ndows 성품 인증 회으로 이동하여 wi =0:53 연
80 months	-2.29	-0.84	0.07	0.45	0.59	-0.14

Effectiveness of domain stabilization

ヨー うくぐ

▶ < ∃ ▶</p>

- DStab is effective for the KOSPI200 index options market, as in the S&P 500 index options market
- We apply a minimum option price threshold of 0.03, following the previous studies examining the KOSPI 200 index options market

Thank you for your attention!

Effectiveness of domain stabilization

19 / 19

.....

3